Volume 6, Issue 2 (8-2019)                   nbr 2019, 6(2): 169-175 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

H. Najdegerami E, Bossier P. The effects of the combination of bioplastic and its degrading bacteria (Genus Acidovorax) on the metabolic activity of anaerobic bacteria in Siberian sturgeon (Acipenser baerii) fingerlings hindgut by using CLPP. nbr. 2019; 6 (2) :169-175
URL: http://nbr.khu.ac.ir/article-1-2549-en.html
Urmia University , e.gerami55@gmail.com
Abstract:   (885 Views)

Community Level Physiological Profiles (CLPP) is novel method to evaluate microbial activity and diversity in ecosystems. According to the previous findings, poly-β-hydroxybutyrate (PHB) as a bio-control product, increases bacterial diversity in some aquatic animals. In this study, the effects of four experimental diets (control, combination of two PHB degrading bacteria, 2% PHB, bacteria+ 2% PHB) on the anaerobic activity of cultivable bacteria in Siberian sturgeon fingerlings hindgut was investigated. Community level physiological profile (CLPP) was used to analyze anaerobic metabolism by using Biolog™ Ecoplate microplates. The results indicated that anaerobic metabolic potential of the bacterial community was different in the 2% PHB-treated fishes as compared with other groups and PHB improved anaerobic metabolism of bacteria in fingerlings. Also anaerobic metabolism of bacteria was calculated on the different carbon sources (amino acids, carboxylic acids, carbohydrates and polymers) in Ecoplate microplates and the results showed that fish treated with PHB had the highest metabolic activity in mentioned carbon sources. The results of this research revealed that replacing of the diets with 2% PHB increases anaerobic metabolism of culturable bacteria in Siberian sturgeon hindgut while adding PHB degrading bacteria did not change this parameter in fingerlings.



Full-Text [PDF 745 kb]   (172 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2016/04/27 | Revised: 2019/09/3 | Accepted: 2018/02/17 | Published: 2019/07/30 | ePublished: 2019/07/30

1. Azain, M. 2004. Role of fatty acids in adipocyte growth and development. - J. Animal Sci. 82: 916-924. [DOI:10.2527/2004.823916x]
2. De Schryver, P., Sinha, A., Kunwar, P., Baruah, K., Verstraete, W., Boon, N., De Boeck, G., and Bossier P. 2009. Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass (Dicentrarchus labrax). - App. Microb. Biotech. 86: 1535-1541. [DOI:10.1007/s00253-009-2414-9]
3. Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., and Bossier, P. 2007. Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. - Trend. Biotech. 25: 472-479. [DOI:10.1016/j.tibtech.2007.08.001]
4. Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., and Bossier, P. 2009. Short-chain fatty acids and poly- β -hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production. - Biotech. Adv. 27: 680-685. [DOI:10.1016/j.biotechadv.2009.04.026]
5. Garland, J., and Mills, A. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. - App. Environ. Microb. 57: 2351-2359.
6. Gibson, G. and Roberfroid, M. 1995. Dietary modulation of the human colonic microbiota introducing the concept of prebiotics. - J. Nut. 125: 1401-1412. [DOI:10.1093/jn/125.6.1401]
7. Halet, D., Defoirdt, T., Van Damme, P., Vervaeren, H., Forrez, I., Van de Wiele, T., Boon, N., Sorgeloos, P., Bossier, P., Verstraete, W. 2007. Poly-β-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. - Fems Microb. Ecol. 60: 363-369. [DOI:10.1111/j.1574-6941.2007.00305.x]
8. Insam, H. 1997. Substrate utilization tests in microbial ecology. A preface to the special issue of the Journal of Microbiological Methods. - J. Microb. Methods 30: 1-2. [DOI:10.1016/S0167-7012(97)00037-7]
9. Kato, N., Konishi, H., Shimao, M. and Sakazawa, C. 1992. Production of 3 - hydroxybutyric acid trimer by Bacillus megaterium B-124. - J. Ferment. Bioeng. 73: 246-247. [DOI:10.1016/0922-338X(92)90173-R]
10. Lim, C.C., Ferguson, L.R., Tannock, G.W. 2005. Dietary fibres as 'prebiotics': implications for colorectal cancer. - Mol. Nut. Food Res. 49: 609-619. [DOI:10.1002/mnfr.200500015]
11. Liu, Y., De Schryver, P., Van Delsen, B., Maignien, L., Boon, N., Sorgeloos, P., Verstraete, W., Bossier, P., and Defoirdt, T. 2010. PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. - FEMS Microb. Ecol. 74:196-204. [DOI:10.1111/j.1574-6941.2010.00926.x]
12. Manning, T. and Gibson, G. 2004. Prebiotics. - Best Prac. Res. Clin. Ga., 18: 287-298. [DOI:10.1016/j.bpg.2003.10.008]
13. Najdegerami, E.H., Ngoc, Tran T., Defoirdt, T., Marzorati, M., Sorgeloos, P., Boon, N., and Bossier P. 2011. Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its GI tract microbial community. - Microb. Ecol. 79: 25-33. [DOI:10.1111/j.1574-6941.2011.01194.x]
14. Najdegerami, E.H. 2012. The effects of Poly-β-hydroxybutyrate on Siberian sturgeon (Acipenser baerii) larval and juveniles culture. - Ph.D. thesis, Gent University, Belgium. 203 pp.
15. Najdegerami, E.H., Baruah, K., Shiri, A., Rekecki, A., Van den Broeck, W., Sorgeloos, P., and Bossier P. 2013. Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-β-hydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. - Aquacult. Res. 46: 801-812. [DOI:10.1111/are.12231]
16. Najdegerami, E.H. 2015. The effects of Poly-β-hydroxybutyrate on rainbow trout (Oncorhynchus mykiss) larval and juveniles culture. - Iran National Science Foundation. 138 pp.
17. Nhan, D., Wille, M., De Schryver, P., Defoirdt, T., Bossier, P., and Sorgeloos, P. 2010. The effect of poly-β-hydroxybutyrate on larviculture of the giant freshwater prawn (Macrobrachium rosenbergii). - Aquacul. 302: 76-81. [DOI:10.1016/j.aquaculture.2010.02.011]
18. Patnaik, P. 2005. Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. - Crit. Rev. Biotech. 25: 153-171. [DOI:10.1080/07388550500301438]
19. Smiricky-Tjardes, M., Grieshop, C., Flickinger, E., Bauer, L., Fahey, G. 2003. Dietary galactooligosaccharides affect ileal and total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. - J Animal Sci. 81: 2535-2545. [DOI:10.2527/2003.81102535x]
20. Uchii K., Matsui K., Yonekura R., Tani K., Kenzaka T., Nasu M., 2006, Genetic and physiological characterization of the intestinal bacterial microbiota of Bluegill (Lepomis macrochirus) with three different feeding habits. - Microb. Ecol. 51: 277-284. [DOI:10.1007/s00248-006-9018-z]
21. Weber, K., and Legge, R. 2009. One-dimensional metric for tracking bacterial community divergence using sole carbon source utilization patterns. - J. Microb. Method. 79: 55-61. [DOI:10.1016/j.mimet.2009.07.020]
22. Yousefian, M, and Amiri, M. 2009. A review of the use of prebiotic in aquaculture for fish and shrimp. - Afr. J. Biotech. 25: 313-7318.

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2020 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb