دوره 6، شماره 4 - ( 10-1398 )                   جلد 6 شماره 4 صفحات 477-464 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه شهید چمران اهواز، دانشکده علوم، گروه زیست شناسی ، p.zoufan@scu.ac.ir
چکیده:   (3071 مشاهده)

 با توجه به این­که فعالیت کارخانه‏ های ‏تولید سیمان منجر به آزاد سازی انواع آلاینده‏ ها ‏به محیط می ‏شود، این پژوهش به منظور بررسی ‏آثار ناشی از غبار کارخانه سیمان بهبهان بر جذب برخی از عناصر غذایی و شاخص ‏های ‏بیوشیمیایی در گونه‏ های ‏گیاهی علفی غالب رشد یافته در منطقه شامل خردل وحشی، پنیرک و جارو علفی انجام شد. بدین منظور پس از نمونه برداری و انتقال نمونه‏ های ‏گیاهی به آزمایشگاه، غلظت برخی عناصر غذایی همچون آهن، مس، روی، پتاسیم، منگنز، فسفر و نیتروژن برای نمونه‏ های ‏گیاهی و خاکی مورد سنجش قرار گرفت. همچنین، سنجش برخی شاخص‏ های ‏بیوشیمیایی نظیر محتوای رنگدانه‏ های ‏فتوسنتزی، پروتئین کل، کربوهیدرات محلول، پرولین، رطوبت نسبی، pH برگی، آسکوربات کل و نهایتا شاخص تحمل به آلودگی هوا ارزیابی شدند. بر اساس این نتایج تصور می­شود هر سه گونه با شاخص تحمل به آلودگی بیش­تر از 16 جزو گونه‏ های ‏متحمل به آلودگی هوا محسوب شوند. بر اساس این نتایج، تصور می ­شود که غبار ناشی از فعالیت کارخانه سیمان منجر به تجمع سمی عناصر ذکر شده در گیاهان تحت مطالعه نشده است، با این وجود کمبود منگنز و فسفر برای هر سه گونه مشخص شد. علاوه بر این، به نظر می ­رسد که سه گونه گیاهی احتمالاً از راهکارهای متفاوتی برای تحمل آلاینده ­های موجود در غبار منطقه بهره می­ گیرند.

 
متن کامل [PDF 1359 kb]   (879 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: علوم گیاهی
دریافت: 1396/10/15 | ویرایش نهایی: 1400/3/11 | پذیرش: 1398/3/12 | انتشار: 1398/10/18 | انتشار الکترونیک: 1398/10/18

فهرست منابع
1. Agbaire, P.O. and Esiefarienrhe, E. 2009. Air pollution tolerance indices (apti) of some plants around Otorogun Gas Plant in Delta State, Nigeria. - J. App. Sci. Environ. Manag. 13: 11-14. [DOI:10.4314/jasem.v13i1.55251]
2. Alamgir, A.N.M. and Akhter, S. 2010. Effects of aluminium on some biochemical characteristics of wheat (Triticum aestivum L.). - Bangl. J. Bot. 39: 9-14. [DOI:10.3329/bjb.v39i1.5519]
3. Allen, R.D. 2008. Dissection of oxidative stress tolerance using transgenic plants. - Plant Physiol. 107: 1049-1054. [DOI:10.1104/pp.107.4.1049]
4. Ambibola, A.F., Kehinde-Philips, F. and Olatunji, A.S. 2007. The sagamu cement factory. SW Nigeria: Is the dust generated a potential health hazard? - Environ. Geochem. Health 29: 163-167. [DOI:10.1007/s10653-006-9068-7]
5. Baker, A.J.M., McGrath, S.P., Reeves, R.D. and Smith, J.A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N and Banuelos G (eds.), Phytoremediation of contaminated soil and water, 85-107. - Lewis Publishers CRC, Boca Raton. [DOI:10.1201/9781439822654.ch5]
6. Bamniya, B.R., Kapoor, C.S. and Kapoor, K. 2012. Searching for efficient sink for air pollutants: Studies on Mangifera indica L. - Clean Technol. Envir.14: 107-114. [DOI:10.1007/s10098-011-0382-0]
7. Bates, S. 1973. Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207. [DOI:10.1007/BF00018060]
8. Bradford, M.M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
9. Branquinho, C., Serrano, H.C., Pinto, M.J. and Martins-Loucao, M.A. 2007. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. - Environ. Pollut. 146: 437-443. [DOI:10.1016/j.envpol.2006.06.034]
10. Buszewski, B., Jastrzebska, A. Kowalkowski, K. and Gorna-Binkul, A. 2000. Monitoring of selected heavy metals uptake by plants and soil in the area of Torub Poland. - Pol. J. Environ. Stud. 9: 511-515.
11. Chao, Y.Y., Hong, C.Y. and Kao, C.H. 2010. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. - Plant Physiol. Biochem. 48: 374-381. [DOI:10.1016/j.plaphy.2010.01.009]
12. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method of determination of sugars and related substances. - Anal. Chem. 28: 350-356. [DOI:10.1021/ac60111a017]
13. Dwivedi, R. and Dubey, S. 2017. Impact of cement industry pollution on physiomorphological attributes of mango tree (Mangifera indica) around industrial belt Sarla Nagar, Maihar, Satna (M.P.). - J. Med. Plants Stud. 5: 274-276.
14. Escobedoa, F.J., Wagnerb, J.E., Nowakc, D.J., De la Mazad, C.L., Rodriguezd, M. and Cranec, D.E. 2008. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality. - J. Environ. Manag. 86: 148-157. [DOI:10.1016/j.jenvman.2006.11.029]
15. Fischerová, Z., Tlustos, P., Száková, J. and Sichorová, K. 2006. A comparison of phytoremediation capability of selected plant species for given trace elements. - Environ. Pollut. 144: 93-100. [DOI:10.1016/j.envpol.2006.01.005]
16. Foyer, C.H., Ruban, A.V. and Noctor, G. 2017. Viewing oxidative stress through the lens of oxidative signalling rather than damage. - Biochem. J. 474: 877-883. [DOI:10.1042/BCJ20160814]
17. Garcia-Lorenzo, M.L., Perez-Sirvent, C. Martinez-Sanchez, M.J. and Molina-Ruiz, J. 2012. Trace elements contamination in an abandoned mining site in a semiarid zone. - J. Geochem. Explor. 113: 23-35. [DOI:10.1016/j.gexplo.2011.07.001]
18. Gerrard, J. 2000. Fundamentals of soils (Routledge fundamentals of physical geography). - Routledge, New York. pp: 225.
19. Ghosh, M. and Singh, S.P. 2005. Comparative uptake and phytoextraction study of soil induced choromium by accumulator and high biomass weed species. - App. Ecol. Environ. Res. 3: 67-79. [DOI:10.15666/aeer/0302_067079]
20. Hayat, S., Hayat, Q., Alyemeni, M.N., Shafi Wani, A., Pichtel, J. and Ahmad, A. 2012. Role of proline under changing environments. - Plant Behav. 7: 1456- 1466. [DOI:10.4161/psb.21949]
21. Hediat, M.H., Salama, M. Al-Rumaih, M. and Al-Dosary, M.A. 2011. Effect of Riyadh cement industry pollution on some physiological and morphological factors of Datura innoxia Mill. plant. - Saudi J. Biol. Sci. 18: 227-237. [DOI:10.1016/j.sjbs.2011.05.001]
22. Igbal, M.Z. and Shafig, M. 2001. Periodical effect of cement dust pollution on the growth of some plants species. - Turk. J. Bot. 25: 19-24.
23. Jafari, M., Zare Chahouki, M.A., Tavili, A. and Kohandel, A. 2007. Soil-vegetation relationships in rangelands of Qom province. - Pajouhesh Sazandegi 19: 110-116.
24. Joshi, N., Chauhan, A. and Joshi, P.C. 2009. Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. - Environmentalist 29: 398-404. [DOI:10.1007/s10669-009-9218-4]
25. Karmakar D, Malik N, and Padhy, P.K. 2016. Effects of industrial air pollution on biochemical parameters of Shorea robusta and Acacia auriculiformis. - Res. J. Recent Sci. 5: 29-33.
26. Kjeldahl, J.Z. 1883. A new method for the determination of nitrogen in organic bodies. - Anal. Chem. 22: 366.
27. Kovacs, B., Gyori, Z., Prokisch, J., Loch, J. and Daniel, P. 1996. A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. - Commun. Soil Sci. Plant Anal. 27: 1177-1198. [DOI:10.1080/00103629609369625]
28. Latrou, M., Papadopoulos, F., Papadopoulos, O., Dichala, P., Psoma, P. and Bountla, A. 2014. Determination of soil available phosphorus using the Olsen and Mehlich 3 method for Greek soils having variable amounts of calcium carbonate. - Commun. Soil Sci. Plant Anal. 45: 2207-2214. [DOI:10.1080/00103624.2014.911304]
29. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382. [DOI:10.1016/0076-6879(87)48036-1]
30. Lin, W., Xiao, T., Wu, Y., Ao, Z. and Ning, Z. 2012. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. - Chemosphere 86: 837-84. [DOI:10.1016/j.chemosphere.2011.10.060]
31. Lindsay, W.L. and Norvell, W.A. 1978. Development of a DTPA test for zinc, iron, manganese and copper. - Soil Sci. Soc. Am. J. 42: 421-428. [DOI:10.2136/sssaj1978.03615995004200030009x]
32. Malakooti, M.J. and Tehrani, M.M. 2006.The role of micronutrients in increasing yield and improving the quality of agricultural products (microelements with enormous impact). - Tarbiat Modares University Press, Tehran.
33. Mandre, M. and Klos Eiko, J. 1997. Changes carbohydrate partitioning in 6- year- old coniferous trees after proloneged exposure of cement dust. - Z. Naturforsch B. J. Chem. Sci. 52:1-9. [DOI:10.1515/znc-1997-9-1005]
34. Mc Cord, J.M. 2000. The evolution of free radicals and oxidative stress. - Am.J. Med. 108: 652-659. [DOI:10.1016/S0002-9343(00)00412-5]
35. Mohammed, M.A., Adamu, A.M. and Borkoma, M.B. 2015. Determination of air pollution tolerance index of selected trees in selected location in Maiduguri. - App. Res. J. 1: 378-383.
36. Mukherjee, S.P. and Choudhuri, M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. - Physiol. Plant. 58: 166-170. [DOI:10.1111/j.1399-3054.1983.tb04162.x]
37. Nadgórska-Socha, A., Kandziora-Ciupa, M., Trzęsicki, M. and Barczyk, G. 2017. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. - Chemosphere 183: 471-482. [DOI:10.1016/j.chemosphere.2017.05.128]
38. Nelson, G.D. and Ilias, I.F. 2007. Effect of inert dust on olive (Olea europaea L.) leaf physiological parameters. - Environ. Sci. Pollut. Res. Int. 14: 212-214. [DOI:10.1065/espr2006.08.327]
39. Olumi, H., Rezanejad, F. and Keramat, B. 2016. Comparative study of biochemical parameters of Pinus nigra and P. elderica cultivated in the area around Sarcheshmeh Copper Complex and Kantuyeh. - J. Iran. Plant Ecophysiol. Res.10: 1-12.
40. Pathak, V., Tripathi, B.D. and Mishra, V.K. 2011. Evaluation of Anticipated Performance Index of some tree species for green belt development to mitigate traffic generated noise. - Urban Forest. Urban Green. 10: 61-66. [DOI:10.1016/j.ufug.2010.06.008]
41. Pollard, J., Reeves, R.D. Baker, A.J.M. 2014. Facultative hyper accumulation of heavy metals and metalloids. - Plants Sci. 217-218: 8-17. [DOI:10.1016/j.plantsci.2013.11.011]
42. Posmyk, M.M., Kontek, R. and Janas, K.M. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. - Ecotoxicol. Environ. Saf. 72:596-602. [DOI:10.1016/j.ecoenv.2008.04.024]
43. Qiu, R.L., Zhao, X., Tang, X.Z., Yu, F.M. and Hu, P.J. 2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. - Chemosphere 74: 6-12. [DOI:10.1016/j.chemosphere.2008.09.069]
44. Rady, M.M. and Osman, A.S. 2012. Response of growth and antioxidant system of heavy metal-contaminated tomato plants to 24-epibrassinolide. - Afr. J. Agric. Res. 7: 3249-3254. [DOI:10.5897/AJAR12.079]
45. Reyes, I., Valery, A. and Valduz, Z. 2006. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. - Plant Soil 287: 69-75. [DOI:10.1007/s11104-006-9061-z]
46. Sajadinia, S.A., Basiri, R., Fayyaz, P. and Moradi, M. 2016. Morphological and physiological impacts of cement kiln particle on Ziziphus spina-christi L. - Iran. J. Forest 8: 79-89.
47. Semhi, K., Al-Khirbash, S., Abdalla, O., Khan, T., Duplay, J., Chaudhuri, S. and Al-Saidi, S. 2010. Dry atmospheric contribution to the plant-soil system around a cement factory: spatial variations and sources, a case study from Oman. - Water Air Soil Pollut. 205: 343-357. [DOI:10.1007/s11270-009-0079-8]
48. Shafi Tantrey, M. and Agnihotri, R.K. 2010. Chlorophyll and proline content of gram (Cicer arietinum L.) under cadmium and mercury treatments. - Res. J. Agric. Sci. 1: 119-122.
49. Siqueira-Silva, A.I., Pereira, E.G., de Lemos-Filho, J.P., Modolo, L.V. and Paiva, E.A.S. 2017. Physiological traits and antioxidant metabolism of leaves of tropical woody species challenged with cement dust. - Ecotoxicol. Environ. Saf. 144: 307-314. [DOI:10.1016/j.ecoenv.2017.06.041]
50. Skelly, J.M. 2003. Native plants as bioindicators of air pollutants: contributed papers to a symposium held in conjunction with the 34th air pollution workshop. - Environ. Pollut. 125:1-2. [DOI:10.1016/S0269-7491(03)00084-8]
51. Soon, Y.K. and Abboud, S. 1993 Cadmium, chromium, lead and nickel. In: Carter MR (ed.), Soil sampling and methods of analysis, 101-109. - Lewis Publishers CRC, Boca Raton.
52. Thambavani, D.S. and Maheswari, J. 2014. Response of native tree species to ambient air quality. - Chem. Sci. Trans. 3: 438-444.
53. Tripathi, A.K. and Gautam, M. 2007. Biochemical parameters of plants as indicators of air pollution. - J. Environ. Biol. 28: 127-132.
54. Yanqun, Z., Yuan, L., Schvartz, C., Langlade, L. and Fan, L. 2004. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. - Environ. Int. 30: 567-576. [DOI:10.1016/j.envint.2003.10.012]
55. Zouari, M., Ahmed, C.B., Elloumi, N., Bellassoued, K., Delmail, D., Labrousse, P., Abdallah, F.B. and Rouina, B.B. 2016. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. - Ecotoxicol. Environ. Saf. 128: 195-205. [DOI:10.1016/j.ecoenv.2016.02.024]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.