Volume 6, Issue 4 (1-2020)                   nbr 2020, 6(4): 464-477 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Masoudizadeh M, Zoufan P, Rastegarzadeh S. The effects of Behbahan cement factory activity on the absorption of some nutrients and biochemical responses in herbaceous plants Sinapis arvensis, Malva neglecta and Bromus tectorum . nbr. 2020; 6 (4) :464-477
URL: http://nbr.khu.ac.ir/article-1-3048-en.html
Shahid Chamran University of Ahvaz , p.zoufan@scu.ac.ir
Abstract:   (628 Views)
The cement production activities leads to the release of different pollutants into the environment. This research was conducted to study the effects of dust particles released by Behbahan cement factory on the absorption of some nutrient elements and biochemical parameters in dominant herbaceous species grown in this area, including Bromus tectorum, Malva neglecta and Sinapis arvensis. Plant samples were transferred to the laboratory. Then, the concentrations of some nutrient elements, such as Fe, Cu, Zn, K, Mn, P and N, were assayed in plant and soil samples. Moreover, some biochemical parameters, such as photosynthetic pigments, total protein, soluble carbohydrates, proline, relative water content, leaf pH total ascorbate and air pollution tolerance indexes (APTI), were evaluated. Based on these results, it is supposed that three plant species are tolerant to air pollution with an APTI higher than 16. In addition, it seems that the dust released by the cement factory has not led to a toxic accumulation of the elements in the studied plants. The deficiency of Mn and P was determined for three plant species. On the basis of biochemical analysis, it is supposed that these plant species possibly use different strategies to tolerate the pollutants in this area.
Full-Text [PDF 1359 kb]   (134 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2018/01/5 | Revised: 2020/02/24 | Accepted: 2019/06/2 | Published: 2020/01/8 | ePublished: 2020/01/8

1. Agbaire, P.O. and Esiefarienrhe, E. 2009. Air pollution tolerance indices (apti) of some plants around Otorogun Gas Plant in Delta State, Nigeria. - J. App. Sci. Environ. Manag. 13: 11-14. [DOI:10.4314/jasem.v13i1.55251]
2. Alamgir, A.N.M. and Akhter, S. 2010. Effects of aluminium on some biochemical characteristics of wheat (Triticum aestivum L.). - Bangl. J. Bot. 39: 9-14. [DOI:10.3329/bjb.v39i1.5519]
3. Allen, R.D. 2008. Dissection of oxidative stress tolerance using transgenic plants. - Plant Physiol. 107: 1049-1054. [DOI:10.1104/pp.107.4.1049]
4. Ambibola, A.F., Kehinde-Philips, F. and Olatunji, A.S. 2007. The sagamu cement factory. SW Nigeria: Is the dust generated a potential health hazard? - Environ. Geochem. Health 29: 163-167. [DOI:10.1007/s10653-006-9068-7]
5. Baker, A.J.M., McGrath, S.P., Reeves, R.D. and Smith, J.A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N and Banuelos G (eds.), Phytoremediation of contaminated soil and water, 85-107. - Lewis Publishers CRC, Boca Raton. [DOI:10.1201/9781439822654.ch5]
6. Bamniya, B.R., Kapoor, C.S. and Kapoor, K. 2012. Searching for efficient sink for air pollutants: Studies on Mangifera indica L. - Clean Technol. Envir.14: 107-114. [DOI:10.1007/s10098-011-0382-0]
7. Bates, S. 1973. Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207. [DOI:10.1007/BF00018060]
8. Bradford, M.M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254. [DOI:10.1016/0003-2697(76)90527-3]
9. Branquinho, C., Serrano, H.C., Pinto, M.J. and Martins-Loucao, M.A. 2007. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. - Environ. Pollut. 146: 437-443. [DOI:10.1016/j.envpol.2006.06.034]
10. Buszewski, B., Jastrzebska, A. Kowalkowski, K. and Gorna-Binkul, A. 2000. Monitoring of selected heavy metals uptake by plants and soil in the area of Torub Poland. - Pol. J. Environ. Stud. 9: 511-515.
11. Chao, Y.Y., Hong, C.Y. and Kao, C.H. 2010. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. - Plant Physiol. Biochem. 48: 374-381. [DOI:10.1016/j.plaphy.2010.01.009]
12. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method of determination of sugars and related substances. - Anal. Chem. 28: 350-356. [DOI:10.1021/ac60111a017]
13. Dwivedi, R. and Dubey, S. 2017. Impact of cement industry pollution on physiomorphological attributes of mango tree (Mangifera indica) around industrial belt Sarla Nagar, Maihar, Satna (M.P.). - J. Med. Plants Stud. 5: 274-276.
14. Escobedoa, F.J., Wagnerb, J.E., Nowakc, D.J., De la Mazad, C.L., Rodriguezd, M. and Cranec, D.E. 2008. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality. - J. Environ. Manag. 86: 148-157. [DOI:10.1016/j.jenvman.2006.11.029]
15. Fischerová, Z., Tlustos, P., Száková, J. and Sichorová, K. 2006. A comparison of phytoremediation capability of selected plant species for given trace elements. - Environ. Pollut. 144: 93-100. [DOI:10.1016/j.envpol.2006.01.005]
16. Foyer, C.H., Ruban, A.V. and Noctor, G. 2017. Viewing oxidative stress through the lens of oxidative signalling rather than damage. - Biochem. J. 474: 877-883. [DOI:10.1042/BCJ20160814]
17. Garcia-Lorenzo, M.L., Perez-Sirvent, C. Martinez-Sanchez, M.J. and Molina-Ruiz, J. 2012. Trace elements contamination in an abandoned mining site in a semiarid zone. - J. Geochem. Explor. 113: 23-35. [DOI:10.1016/j.gexplo.2011.07.001]
18. Gerrard, J. 2000. Fundamentals of soils (Routledge fundamentals of physical geography). - Routledge, New York. pp: 225.
19. Ghosh, M. and Singh, S.P. 2005. Comparative uptake and phytoextraction study of soil induced choromium by accumulator and high biomass weed species. - App. Ecol. Environ. Res. 3: 67-79. [DOI:10.15666/aeer/0302_067079]
20. Hayat, S., Hayat, Q., Alyemeni, M.N., Shafi Wani, A., Pichtel, J. and Ahmad, A. 2012. Role of proline under changing environments. - Plant Behav. 7: 1456- 1466. [DOI:10.4161/psb.21949]
21. Hediat, M.H., Salama, M. Al-Rumaih, M. and Al-Dosary, M.A. 2011. Effect of Riyadh cement industry pollution on some physiological and morphological factors of Datura innoxia Mill. plant. - Saudi J. Biol. Sci. 18: 227-237. [DOI:10.1016/j.sjbs.2011.05.001]
22. Igbal, M.Z. and Shafig, M. 2001. Periodical effect of cement dust pollution on the growth of some plants species. - Turk. J. Bot. 25: 19-24.
23. Jafari, M., Zare Chahouki, M.A., Tavili, A. and Kohandel, A. 2007. Soil-vegetation relationships in rangelands of Qom province. - Pajouhesh Sazandegi 19: 110-116.
24. Joshi, N., Chauhan, A. and Joshi, P.C. 2009. Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. - Environmentalist 29: 398-404. [DOI:10.1007/s10669-009-9218-4]
25. Karmakar D, Malik N, and Padhy, P.K. 2016. Effects of industrial air pollution on biochemical parameters of Shorea robusta and Acacia auriculiformis. - Res. J. Recent Sci. 5: 29-33.
26. Kjeldahl, J.Z. 1883. A new method for the determination of nitrogen in organic bodies. - Anal. Chem. 22: 366.
27. Kovacs, B., Gyori, Z., Prokisch, J., Loch, J. and Daniel, P. 1996. A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. - Commun. Soil Sci. Plant Anal. 27: 1177-1198. [DOI:10.1080/00103629609369625]
28. Latrou, M., Papadopoulos, F., Papadopoulos, O., Dichala, P., Psoma, P. and Bountla, A. 2014. Determination of soil available phosphorus using the Olsen and Mehlich 3 method for Greek soils having variable amounts of calcium carbonate. - Commun. Soil Sci. Plant Anal. 45: 2207-2214. [DOI:10.1080/00103624.2014.911304]
29. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382. [DOI:10.1016/0076-6879(87)48036-1]
30. Lin, W., Xiao, T., Wu, Y., Ao, Z. and Ning, Z. 2012. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils. - Chemosphere 86: 837-84. [DOI:10.1016/j.chemosphere.2011.10.060]
31. Lindsay, W.L. and Norvell, W.A. 1978. Development of a DTPA test for zinc, iron, manganese and copper. - Soil Sci. Soc. Am. J. 42: 421-428. [DOI:10.2136/sssaj1978.03615995004200030009x]
32. Malakooti, M.J. and Tehrani, M.M. 2006.The role of micronutrients in increasing yield and improving the quality of agricultural products (microelements with enormous impact). - Tarbiat Modares University Press, Tehran.
33. Mandre, M. and Klos Eiko, J. 1997. Changes carbohydrate partitioning in 6- year- old coniferous trees after proloneged exposure of cement dust. - Z. Naturforsch B. J. Chem. Sci. 52:1-9. [DOI:10.1515/znc-1997-9-1005]
34. Mc Cord, J.M. 2000. The evolution of free radicals and oxidative stress. - Am.J. Med. 108: 652-659. [DOI:10.1016/S0002-9343(00)00412-5]
35. Mohammed, M.A., Adamu, A.M. and Borkoma, M.B. 2015. Determination of air pollution tolerance index of selected trees in selected location in Maiduguri. - App. Res. J. 1: 378-383.
36. Mukherjee, S.P. and Choudhuri, M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. - Physiol. Plant. 58: 166-170. [DOI:10.1111/j.1399-3054.1983.tb04162.x]
37. Nadgórska-Socha, A., Kandziora-Ciupa, M., Trzęsicki, M. and Barczyk, G. 2017. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. - Chemosphere 183: 471-482. [DOI:10.1016/j.chemosphere.2017.05.128]
38. Nelson, G.D. and Ilias, I.F. 2007. Effect of inert dust on olive (Olea europaea L.) leaf physiological parameters. - Environ. Sci. Pollut. Res. Int. 14: 212-214. [DOI:10.1065/espr2006.08.327]
39. Olumi, H., Rezanejad, F. and Keramat, B. 2016. Comparative study of biochemical parameters of Pinus nigra and P. elderica cultivated in the area around Sarcheshmeh Copper Complex and Kantuyeh. - J. Iran. Plant Ecophysiol. Res.10: 1-12.
40. Pathak, V., Tripathi, B.D. and Mishra, V.K. 2011. Evaluation of Anticipated Performance Index of some tree species for green belt development to mitigate traffic generated noise. - Urban Forest. Urban Green. 10: 61-66. [DOI:10.1016/j.ufug.2010.06.008]
41. Pollard, J., Reeves, R.D. Baker, A.J.M. 2014. Facultative hyper accumulation of heavy metals and metalloids. - Plants Sci. 217-218: 8-17. [DOI:10.1016/j.plantsci.2013.11.011]
42. Posmyk, M.M., Kontek, R. and Janas, K.M. 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. - Ecotoxicol. Environ. Saf. 72:596-602. [DOI:10.1016/j.ecoenv.2008.04.024]
43. Qiu, R.L., Zhao, X., Tang, X.Z., Yu, F.M. and Hu, P.J. 2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. - Chemosphere 74: 6-12. [DOI:10.1016/j.chemosphere.2008.09.069]
44. Rady, M.M. and Osman, A.S. 2012. Response of growth and antioxidant system of heavy metal-contaminated tomato plants to 24-epibrassinolide. - Afr. J. Agric. Res. 7: 3249-3254. [DOI:10.5897/AJAR12.079]
45. Reyes, I., Valery, A. and Valduz, Z. 2006. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. - Plant Soil 287: 69-75. [DOI:10.1007/s11104-006-9061-z]
46. Sajadinia, S.A., Basiri, R., Fayyaz, P. and Moradi, M. 2016. Morphological and physiological impacts of cement kiln particle on Ziziphus spina-christi L. - Iran. J. Forest 8: 79-89.
47. Semhi, K., Al-Khirbash, S., Abdalla, O., Khan, T., Duplay, J., Chaudhuri, S. and Al-Saidi, S. 2010. Dry atmospheric contribution to the plant-soil system around a cement factory: spatial variations and sources, a case study from Oman. - Water Air Soil Pollut. 205: 343-357. [DOI:10.1007/s11270-009-0079-8]
48. Shafi Tantrey, M. and Agnihotri, R.K. 2010. Chlorophyll and proline content of gram (Cicer arietinum L.) under cadmium and mercury treatments. - Res. J. Agric. Sci. 1: 119-122.
49. Siqueira-Silva, A.I., Pereira, E.G., de Lemos-Filho, J.P., Modolo, L.V. and Paiva, E.A.S. 2017. Physiological traits and antioxidant metabolism of leaves of tropical woody species challenged with cement dust. - Ecotoxicol. Environ. Saf. 144: 307-314. [DOI:10.1016/j.ecoenv.2017.06.041]
50. Skelly, J.M. 2003. Native plants as bioindicators of air pollutants: contributed papers to a symposium held in conjunction with the 34th air pollution workshop. - Environ. Pollut. 125:1-2. [DOI:10.1016/S0269-7491(03)00084-8]
51. Soon, Y.K. and Abboud, S. 1993 Cadmium, chromium, lead and nickel. In: Carter MR (ed.), Soil sampling and methods of analysis, 101-109. - Lewis Publishers CRC, Boca Raton.
52. Thambavani, D.S. and Maheswari, J. 2014. Response of native tree species to ambient air quality. - Chem. Sci. Trans. 3: 438-444.
53. Tripathi, A.K. and Gautam, M. 2007. Biochemical parameters of plants as indicators of air pollution. - J. Environ. Biol. 28: 127-132.
54. Yanqun, Z., Yuan, L., Schvartz, C., Langlade, L. and Fan, L. 2004. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. - Environ. Int. 30: 567-576. [DOI:10.1016/j.envint.2003.10.012]
55. Zouari, M., Ahmed, C.B., Elloumi, N., Bellassoued, K., Delmail, D., Labrousse, P., Abdallah, F.B. and Rouina, B.B. 2016. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Olea europaea L. cv Chemlali exposed to cadmium stress. - Ecotoxicol. Environ. Saf. 128: 195-205. [DOI:10.1016/j.ecoenv.2016.02.024]

Add your comments about this article : Your username or Email:

Send email to the article author

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2020 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb