دوره 10، شماره 4 - ( 12-1402 )                   جلد 10 شماره 4 صفحات 99-86 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi F. The effect of simulated space vacuum conditions on some biochemical and physiological responses of quinoa . nbr 2024; 10 (4) : 6
URL: http://nbr.khu.ac.ir/article-1-3657-fa.html
موسوی فاطمه. تاثیر شرایط خلا شبیه سازی شده فضا بر برخی از پاسخ های بیوشیمیایی و فیزیولوژیکی کینوا. یافته‌ های نوین در علوم زیستی. 1402; 10 (4) :86-99

URL: http://nbr.khu.ac.ir/article-1-3657-fa.html


پژوهشگاه هوافضا ، moosavi@ari.ac.ir
چکیده:   (719 مشاهده)
بذر کینوا (Chenopodium quinoa) به دلیل محتوای پروتئینی غنی و فعالیت آنتی اکسیدانی بالا مرتبط با پلی فنول ها به عنوان یک منبع غذایی بی نظیر مطرح می باشد. در مطالعه حاضر با هدف انتخاب بذر این گونه برای ارسال به فضا، پاسخ محتوای پروتئینی، فنل، فلاونوئید، ظرفیت آنتی اکسیدانی و شاخص جوانه زنی بذر آن به شرایط خلا شبیه سازی شده فضا مورد سنجش قرار گرفت. نتایج افزایش معنادار شاخص جوانه زنی بذر را برای گروه تحت تیمار خلا نسبت به گروه کنترل نشان داد. محتوای فنل و فلاونوئید کل در بذرهای تحت تیمار خلا نسبت به گروه کنترل بیشتر بود. شرایط خلا موجب افزایش معنادار ظرفیت آنتی اکسیدانی بذرهای کینوا شد. محتوای پروتئین کل بذر در گروه تحت تیمار خلا و کنترل به ترتیب 25 و 35 میلی گرم بر میلی لیتر بود. نیمرخ پروتئینی بذر 13 باند پروتئینی مشخص در محدوده وزن مولکولی 15 تا 70 کیلودالتون نشان داد. شدت باندهای پروتئینی بین گروه های تیمار خلا و کنترل به طرز معناداری تفاوت داشت. تغییرات ساختاری در پریکارپ بذر و همچنین خروج آب و روغن از بذرها تحت شرایط خلا می تواند از علل پاسخ های بیوشیمیایی و فیزیولوژیکی متفاوت بذرهای کینوا در مطالعه حاضر باشد.
 
شماره‌ی مقاله: 6
متن کامل [PDF 412 kb]   (338 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: علوم گیاهی
دریافت: 1402/9/6 | ویرایش نهایی: 1403/4/24 | پذیرش: 1402/10/18 | انتشار: 1402/12/23 | انتشار الکترونیک: 1402/12/23

فهرست منابع
1. Abdellaoui, R., Souid, A., Zayoud, D., & Neffati, M. (2013). Effects of natural long storage duration on seed germination characteristics of Periploca angustifolia Labill. African Journal of Biotechnology, 12(15). [DOI:10.5897/AJB10.1862]
2. Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food chemistry, 183, 83-90. [DOI:10.1016/j.foodchem.2015.03.029]
3. Ando, H., Chen, Y.-c., Tang, H., Shimizu, M., Watanabe, K., & Mitsunaga, T. (2002). Food components in fractions of quinoa seed. Food Science and Technology Research, 8(1), 80-84. [DOI:10.3136/fstr.8.80]
4. Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C.-M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), 1326. [DOI:10.3390/molecules27041326]
5. Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., . . . Otambekova, M. (2016). Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in plant science, 7, 850. [DOI:10.3389/fpls.2016.00850]
6. Boughalleb, F., Mahmoudi, M., Abdellaoui, R., Yahia, B., Zaidi, S., & Nasri, N. (2020). Effect of long‐term storage on phenolic composition, antioxidant capacity, and protein profiles of Calicotome villosa subsp. intermedia seeds. Journal of food biochemistry, 44(1), e13093. [DOI:10.1111/jfbc.13093]
7. Bradford, M. (1976). A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein dye intetaction. Anal biochem, 72, 248-254. [DOI:10.1016/0003-2697(76)90527-3]
8. Brinegar, C., & Goundan, S. (1993). Isolation and characterization of chenopodin, the 11S seed storage protein of quinoa (Chenopodium quinoa). Journal of agricultural and food chemistry, 41(2), 182-185. [DOI:10.1021/jf00026a006]
9. Carillo, P., Morrone, B., Fusco, G. M., De Pascale, S., & Rouphael, Y. (2020). Challenges for a sustainable food production system on board of the international space station: A technical review. Agronomy, 10(5), 687. [DOI:10.3390/agronomy10050687]
10. Coello, P., & Vázquez-Ramos, J. M. (1996). Maize DNA polymerase 2 (an α-type enzyme) suffers major damage after seed deterioration. Seed Science Research, 6(1), 1-7. [DOI:10.1017/S0960258500002932]
11. Da Silva, L. F., Öchsner, A., & Adams, R. D. (2011). Handbook of adhesion technology: Springer Science & Business Media. [DOI:10.1007/978-3-642-01169-6]
12. Dekoulis, G. (2018). Space Flight: BoD-Books on Demand. [DOI:10.5772/intechopen.69789]
13. Dini, I., Tenore, G. C., & Dini, A. (2005). Nutritional and antinutritional composition of Kancolla seeds: an interesting and underexploited andine food plant. Food chemistry, 92(1), 125-132. [DOI:10.1016/j.foodchem.2004.07.008]
14. Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food chemistry, 97(4), 654-660. [DOI:10.1016/j.foodchem.2005.04.028]
15. El-Hakim, A., Ahmed, F., Mady, E., Abou Tahoun, A. M., Ghaly, M. S., & Eissa, M. A. (2022). Seed quality and protein classification of some quinoa varieties. Journal of Ecological Engineering, 23(1). [DOI:10.12911/22998993/143866]
16. Elsohaimy, S., Refaay, T., & Zaytoun, M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305. [DOI:10.1016/j.aoas.2015.10.007]
17. Fairbanks, D., Burgener, K., Robison, L., Andersen, W., & Ballon, E. (1990). Electrophoretic characterization of quinoa seed proteins. Plant Breeding, 104(3), 190-195. [DOI:10.1111/j.1439-0523.1990.tb00422.x]
18. Halloy, S., & González, J. (1993). An inverse relation between frost survival and atmospheric pressure. Arctic and Alpine Research, 25(2), 117-123. [DOI:10.2307/1551547]
19. Harvey, B., Zakutnyaya, O., Harvey, B., & Zakutnyaya, O. (2011). Orbiting space stations. Russian Space Probes: Scientific Discoveries and Future Missions, 301-374. [DOI:10.1007/978-1-4419-8150-9_6]
20. Hirose, Y., Fujita, T., Ishii, T., & Ueno, N. (2010). Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food chemistry, 119(4), 1300-1306. [DOI:10.1016/j.foodchem.2009.09.008]
21. James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Advances in food and nutrition research, 58, 1-31. [DOI:10.1016/S1043-4526(09)58001-1]
22. Jancurová, M., Minarovičová, L., & Dandár, A. (2009). Quinoa-a rewiev. Czech Journal of Food Sciences, 27(2), 71-79. [DOI:10.17221/32/2008-CJFS]
23. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature, 227(5259), 680-685. [DOI:10.1038/227680a0]
24. Liu, S., Zhou, R., Tian, S., & Gai, J. (2007). A study on subunit groups of soybean protein extracts under SDS-PAGE. Journal of the American Oil Chemists' Society, 84, 793-801. [DOI:10.1007/s11746-007-1111-z]
25. Mousavi, F. (2019). Effects of Simulated Microgravity on Pollen Germination and Growth of Lily. Technology in Aerospace Engineering, 3(2), 53-58.
26. Mousavi, F. (2023). Plant germplasm and extreme conditions of outer space. Space Science and Technology.
27. Musgrave, M. E., Gerth, W. A., Scheld, H. W., & Strain, B. R. (1988). Growth and mitochondrial respiration of mungbeans (Phaseolus aureus Roxb.) germinated at low pressure. Plant physiology, 86(1), 19-22. [DOI:10.1104/pp.86.1.19]
28. Paul, A.-L., & Ferl, R. J. (2006). The biology of low atmospheric pressure-implications for exploration mission design and advanced life support. Gravitational and Space Biology, 19(2), 3-18.
29. Ponessa, G., Such, P., González, J., Mercado, M., Buedo, S., González, D., . . . Daly, M. (2022). Tolerance of high mountain quinoa to simulated extraplanetary conditions. Changes in surface mineral concentration, seed viability and early growth. Acta Astronautica, 195, 502-512. [DOI:10.1016/j.actaastro.2022.03.039]
30. Prado, F. E., Boero, C., Gallardo, M. R. A., & González, J. A. (2000). Effect of NaCl on growth germination and soluble sugars content in Chenopodium quinoa Willd. seeds.
31. Pukacka, S., & Ratajczak, E. (2007). Age-related biochemical changes during storage of beech (Fagus sylvatica L.) seeds. Seed Science Research, 17(1), 45-53. [DOI:10.1017/S0960258507629432]
32. Repo-Carrasco-Valencia, R. A.-M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Food Science and Technology, 31, 225-230. [DOI:10.1590/S0101-20612011000100035]
33. Romero, S., & Shahriari, S. (2011). Quinoa's global success creates quandary at home. The New York Times, 19.
34. Sammour, R. H. (1989). Effect of ageing on the major reserve molecules and their related enzyme in natural aged seeds of flax. Journal of Islamic Academy of Sciences, 2(4), 247-251.
35. Schwartzkopf, S. H., & Mancinelli, R. L. (1991). Germination and growth of wheat in simulated Martian atmospheres. Acta Astronautica, 25(4), 245-247. [DOI:10.1016/0094-5765(91)90078-J]
36. Sigstad, E. E., & Prado, F. E. (1999). A microcalorimetric study of Chenopodium quinoa Willd. seed germination. Thermochimica acta, 326(1-2), 159-164. [DOI:10.1016/S0040-6031(98)00599-1]
37. Sin, M. H. (2017). Total phenolic content and anti-oxidant potential of Ficus deltoidea using green and non-green solvents. Journal of Pharmaceutical Negative Results, 8(1), 15-19. [DOI:10.4103/0976-9234.204913]
38. Tang, Y., Gao, F., Guo, S., & Li, F. (2014). Effects of hypobaria and hypoxia on seed germination of six plant species. Life Sciences in Space Research, 3, 24-31. [DOI:10.1016/j.lssr.2014.08.001]
39. Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., . . . Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food chemistry, 174, 502-508. [DOI:10.1016/j.foodchem.2014.11.040]
40. Tang, Y., Zhang, B., Li, X., Chen, P. X., Zhang, H., Liu, R., & Tsao, R. (2016). Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. Journal of agricultural and food chemistry, 64(8), 1712-1719. [DOI:10.1021/acs.jafc.5b05761]
41. Toapanta, A., Carpio, C., Vilcacundo, R., & Carrillo, W. (2016). Analysis of protein isolate from quinoa (Chenopodium quinoa Willd). Asian J. Pharm. Clin. Res, 9(2), 332-334.
42. Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547. [DOI:10.1002/jsfa.4158]
43. Vilcacundo, R., Barrio, D., Carpio, C., García-Ruiz, A., Rúales, J., Hernández-Ledesma, B., & Carrillo, W. (2017). Digestibility of quinoa (Chenopodium quinoa Willd.) protein concentrate and its potential to inhibit lipid peroxidation in the Zebrafish larvae model. Plant Foods for Human Nutrition, 72, 294-300. [DOI:10.1007/s11130-017-0626-1]
44. Vishwanath, K., Prasanna, K., Gowda, R., Prasad, S. R., Narayanaswammy, S., & Pallavi, H. (2007). Influence of accelerated ageing on total soluble seed protein profiles of tomato. SEED RESEARCH-NEW DELHI-, 35(2), 194.
45. Visscher, A. M., Seal, C. E., Newton, R. J., Frances, A. L., & Pritchard, H. W. (2016). Dry seeds and environmental extremes: consequences for seed lifespan and germination. Functional Plant Biology, 43(7), 656-668. [DOI:10.1071/FP15275]
46. Wang, X., Zhao, R., & Yuan, W. (2020). Composition and secondary structure of proteins isolated from six different quinoa varieties from China. Journal of Cereal Science, 95, 103036. [DOI:10.1016/j.jcs.2020.103036]
47. Wołosiak, R., Drużyńska, B., Piecyk, M., Majewska, E., & Worobiej, E. (2018). Effect of sterilization process and storage on the antioxidative properties of runner bean. Molecules, 23(6), 1409. [DOI:10.3390/molecules23061409]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




کلیه حقوق این وب سایت متعلق به یافته های نوین در علوم زیستی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb