Volume 7, Issue 1 (4-2020)                   nbr 2020, 7(1): 55-63 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavanaeian S, Hamedi J, Haghighat S. Introducing antimicrobial exopolymer-producing actinobacteria from soils of Iran. nbr. 2020; 7 (1) :55-63
URL: http://nbr.khu.ac.ir/article-1-3143-en.html
Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran , jhamedi@ut.ac.ir
Abstract:   (266 Views)
Exopolymers (EPS) are high-molecular-weight polymers secreted by some micro-organisms and have several applications in food, pharmaceutical, packaging and agricultural industries, as well as medicine. Actinobacteria are valuable bacteria in biotechnology and many commercial drugs such as antibiotics, antioxidants and immune-suppressant agents are derived from Actinobacteria. Recently, their other capabilities such as exopolymer production have been taken into consideration. Due to the high potential of actinobacteria in producing various compounds and increased prevalence of infections by antibiotic-resistant pathogens, the aim of the present study was to evaluate the potential of isolated Actinobacteria from various locations of Iran to produce EPS with antimicrobial activity. Appropriate dilutions of the samples were, therefore, cultured in ISP2 medium after treatment. The isolates were primarily identified by morphological tests. Then, their ability to produce EPS was investigated in BHI medium with 5% sucrose. The exopolymers of the most efficient strain were analyzed by UV-visible spectroscopy and FT-IR. Finally, the most efficient isolate was molecularly identified. Of the 120 isolates, 38 were able to produce EPS, and six had significant capability of producing EPS (10-14 g/L) and showed antibiotic activity against Staphylococcus aureus, Bacillus subtilis and Aspergillus niger. The EPS of the strain So49 had high absorbance in 190-230 nm, but did not have absorbance in 260-280 nm. Therefore, it does not have any protein impurity. The EPS has hydroxyl and carboxyl functional groups, according to FT-IR analysis. 16S rRNA gene analysis showed that the most efficient isolate had 99.68% similarity to Promicromonospora xylanilytica. 


 
Full-Text [PDF 1189 kb]   (73 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2018/06/27 | Revised: 2020/05/9 | Accepted: 2019/07/8 | Published: 2020/03/31 | ePublished: 2020/03/31

References
1. Al-Dhabi, N.A., Esmail, G.A., Duraipandiyan, V., Arasu M.V. & Salem-Bekhit, M. M. 2016. Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia. Extremophiles 20: 79-90. [DOI:10.1007/s00792-015-0799-1]
2. Arifuzzaman, M., Khatun, M. & Rahman. H. 2010. Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. African J. Biotechnol. 9: 4615-4619.
3. Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y. & van Wezel, G.P. 2016. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1-43. [DOI:10.1128/MMBR.00019-15]
4. Bikova, T. & Treimanis. A. 2004. UV-absorbance of oxidized xylan and monocarboxyl cellulose in alkaline solutions. Carbohydr. Polym. 55: 315-322. [DOI:10.1016/j.carbpol.2003.10.005]
5. Castellane, T.C.L., Otoboni A.M.M.B. & Lemos. E.G.d.M. 2015. Characterization of exopolysaccharides produced by rhizobia species. Rev. Bras. Cienc. Solo. 39: 1566-1575. [DOI:10.1590/01000683rbcs20150084]
6. Ciszek-Lenda, M. 2011. Biological functions of exopolysaccharides from probiotic bacteria. Centr. Eur. J. Immunol. 36: 51-55.
7. Ghalem, B. R. 2017. Antioxidant and antimicrobial activities of exopolysaccharides from yoghurt starter. - Am. J. Chem. Biochem. Eng. 2: 35-39.
8. Goodfellow, M. & Williams, S. 1983. Ecology of actinomycetes. Annu. Rev. Microbiol. 37: 189-216. [DOI:10.1146/annurev.mi.37.100183.001201]
9. Hidalgo-Cantabrana, C., Sánchez, B. Milani, C., Ventura, M., Margolles A. & Ruas-Madiedo. P. 2014. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. J. Appl. Environ. Microbiol. 80: 9-18. [DOI:10.1128/AEM.02977-13]
10. Iyer, A., Mody K. & Jha, B. 2004. Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar. Pollut. Bull. 49: 974-977. [DOI:10.1016/j.marpolbul.2004.06.023]
11. Jia, S., Yu, H. Lin Y. & Dai Y. 2007. Characterization of extracellular polysaccharides from Nostoc flagelliforme cells in liquid suspension culture. Biotechnol Bioprocess Eng. 12: 271-275. [DOI:10.1007/BF02931103]
12. Jeong, D., Kim, D.H., Kang, I.B., Kim, H., Song, K.Y., Kim, H.S. & Seo K.H. 2017. Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir. Food Control 78: 436-442. [DOI:10.1016/j.foodcont.2017.02.033]
13. Jorgensen, J. 1993. Antimicrobial susceptibility testing of bacteria that grow aerobically. Infect. Dis. Clin. North. Am. 7: 393-409.
14. Kanamarlapudi, S.L.R.K. & Muddada, S. 2017. Characterization of exopolysaccharide produced by Streptococcus thermophilus CC30. Biomed. Res. Int. 2017: 1-11. [DOI:10.1155/2017/4201809]
15. Khalil, E.S., Abd Manap, M.Y., Mustafa, S., Alhelli, A. M. & Shokryazdan., P. 2018. Probiotic properties of exopolysaccharide-producing Lactobacillus strains isolated from Tempoyak. Molecules 23: 398. [DOI:10.3390/molecules23020398]
16. Kim, Y., Hong, J.W., Chung, Y.S., Kim, S.W., Cho, Y.W., Kim, J.H., Kim, B.J. & Lee., E.J. 2014. Efficacy and safety of sustained-release recombinant human growth hormone in Korean adults with growth hormone deficiency. Yonsei Med. J. 55: 1042-1048. [DOI:10.3349/ymj.2014.55.4.1042]
17. Kumar, M.A., Anandapandian, K.T.K. & Parthiban, K. 2011. Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz. Arch. Biol. Technol. 54: 259-265. [DOI:10.1590/S1516-89132011000200006]
18. Kumar, V., Bharti, A., Gusain, O. & Bisht, G. S. 2010. An improved method for isolation of genomic DNA from filamentous actinomycetes. J. Sci. Engg. Tech. Mgt. 2: 10-13.
19. Lee, H.R., Kim, K.K. & Whang, K.S. 2010. Isolation and phylogenetic characteristics of exopolysaccharide producing bacteria in a rhizosphere soil of Medicinal Herbs. Kor. J. Microbiol. 46: 278-285.
20. Lin, S.P., Calvar, I.L., Catchmark, J.M., Liu, J.R., Demirci A. & Cheng, K.C. 2013. Biosynthesis, production and applications of bacterial cellulose. Cellulose 20: 219-2219. [DOI:10.1007/s10570-013-9994-3]
21. Manivasagan, P., Venkatesan, J., Sivakumar, K. & Kim, S.K. 2014. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res. 169: 262-278. [DOI:10.1016/j.micres.2013.07.014]
22. Moscovici, M. 2015. Present and future medical applications of microbial exopolysaccharides. Front Microbiol. 6: 1012. [DOI:10.3389/fmicb.2015.01012]
23. Nwodo, U.U., Green, E. & Okoh, A.I. 2012. Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci. 13: 14002-14015. [DOI:10.3390/ijms131114002]
24. Stach, E. & Bull, A.T. 2005. Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek 87: 3-9. [DOI:10.1007/s10482-004-6524-1]
25. Suart, B. 2004. Infrared spectroscopy: Fundamental and applications. John Wiley & Sons, pp: 137-166.
26. Suresh Kumar, A., Mody, K. & Jha, B. 2007. Bacterial exopolysaccharides-a perception. J. Basic. Microbiol. 47: 103-117. [DOI:10.1002/jobm.200610203]
27. Vijayabaskar, P., Babinastarlin, S., Shankar, T., Sivakumar, T. & Anandapandian, K. 2011. Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC 121). Adv. Biol. Res. 5: 71-76.
28. Worthington, R.J. & Melander, C. 2013. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 31: 177-184. [DOI:10.1016/j.tibtech.2012.12.006]
29. Wu, M.H., Pan, T.M., Wu, Y.J., Chang, S.J., Chang, M.S. & Hu., C.Y. 2010. Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A. 1 macrophages) and antimicrobial properties. Int. J. Food. Microbiol. 144: 104-110. [DOI:10.1016/j.ijfoodmicro.2010.09.003]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2020 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb