Volume 6, Issue 1 (5-2019)                   nbr 2019, 6(1): 96-105 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi Kouhi S M, Moudi M, Soltani Moghadam E, Sarchahi moghadam H. The investigating of sodium accumulation in some halophytic species of Zygophyllaceae, Polygonaceae, Asteraceae and Amaranthaceae. nbr 2019; 6 (1) :96-105
URL: http://nbr.khu.ac.ir/article-1-3045-en.html
University of Birjand , Smmousavi@birjand.ac.ir
Abstract:   (5234 Views)
The identification of the characteristics of native halophytic species is very important for their practical application. The present study was carried out to identify the halophytic species of a desert and highly saline region around the city of Khosf, southern Khorasan Province, and to detect their general tolerance mechanisms (i.e. salt exclusion or inclusion). Sodium accumulation in the roots and shoots of seven species, including Launaea arborescens, Peganum harmala, Pteropyrum olivieri, Artemisia santolina, Zygophyllum eurypterum Boiss, Aerva javanica, Pulicaria gnaphalode, and their rhizosphere soil were determined. The bioconcentration of sodium from soil to roots (BCF), its translocation from roots to shoots (TF), and its accumulation in the shoots (AF) were then calculated. Results showed that the soil of the studied area was clay loam with a high EC of 65 ds/m, indicating its high salinity level. According to the values of sodium adsorption ratio (SAR) and the exchangeable sodium percentage (ESP) and regarding EC, the soil of studied region can be regarded as a saline-sodic soil. The value of TF in some species was higher than 1. However, none of the species had BCF and AF greater than 1, thus, none of them could be considered to be salt accumulator. Instead, it could be assumed that all of the studied species were salt, or at least, sodium excluders.
Full-Text [PDF 957 kb]   (1242 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2017/06/23 | Revised: 2019/05/6 | Accepted: 2018/12/23 | Published: 2019/04/30 | ePublished: 2019/04/30

References
1. Abdelly, C., Öztürk, M., Ashraf, M. and Grignon, C. 2008. Biosaline agriculture and high salinity tolerance: - Springer Science & Business Media, Berlin & Heidelberg. 370 pp. [DOI:10.1007/978-3-7643-8554-5]
2. Amini-Chermahini, F., Ebrahimi, M., Farajpour, M. and Taj Bordbar, Z. 2014. Karyotype analysis and new chromosome number reports in Zygophyllum species. - Caryologia 67: 321-324. [DOI:10.1080/00087114.2014.980098]
3. Apse, M.P., Aharon, G.S., Snedden, W.A. and Blumwald, E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. - Science 285: 1256-58. [DOI:10.1126/science.285.5431.1256]
4. Babaakbari, M., Farahbakhsh, M., Savaghebi, G.R. and Najafi, N. 2013. Investigation of arsenic concentration in some of the calcareous soils of Ghorveh and arsenic uptake by maize, wheat and rapeseed in a natural contaminated soil. - Water Soil Sci. 23: 1-17.
5. Beier, B.A., Chase, M. and Thulin, M. 2003. Phylogenetic relationships and taxonomy of subfamily Zygophy-lloideae (Zygophyllaceae) based on molecular and morphological data. - Plant Syst. Evolut. 240: 11-39. [DOI:10.1007/s00606-003-0007-0]
6. Breckle, S.W., Wucherer, W., Dimeyeva, L.A. and Ogar, N.P. 2012. Aralkum-a Man-Made Desert: The Desiccated Floor of the Aral Sea (Central Asia). - Springer, Berlin & Heidelberg. 488 pp. [DOI:10.1007/978-3-642-21117-1]
7. Flowers, T.J. and Colmer, T.D. 2015. Plant salt tolerance: adaptations in halophytes. - Annal. Bot. 115: 327-331. [DOI:10.1093/aob/mcu267]
8. Gaxiola, R.A., Li, J.S., Undurraga, S., Dang, L.M., Allen, G.J., Alper, S.L. and Fink, G.R. 2001. Drought- and salttolerant plants result from overexpression of the AVP1 H+-pump. - Proc. Natl. Acad. Sci. USA. 98:11444-11449. [DOI:10.1073/pnas.191389398]
9. Ghavri, S.V., Bauddh, K., Kumar, S. and Singh, R.P. 2013. Bioaccumulation and translocation potential of Na+ and K+ in native weeds grown on industrially contaminated soil. - Int. J. Chem. Tech. Res. 5: 1869-1875.
10. Ghrabi, Z. 2005. A guide to medicinal plants in North Africa. - IUCN Centre for Mediterranean Cooperation, Malaga. 256 pp.
11. Gul, B. and Khan, M.A. 1994. Growth, osmoregulation and ion accumulation in the coastal halophyte Arthrocnemum indicum under field conditions. - Pak. J. Marine Sci. 3:115-123.
12. Harvey H.W. 1957. The chemistry and fertility of sea waters. - J. Chem. Educ. 34: p 51. [DOI:10.1021/ed034p51.3]
13. Hasanuzzaman, M., Nahar, K., Alam, M., Bhowmik, P. C., Hossain, M., Rahman, M. M., Prasad, M.N.V., Ozturk, M. and Fujita, M. 2014. Potential use of halophytes to remediate saline soils. - BioMed. Res. Int. 2014: 1-12. [DOI:10.1155/2014/589341]
14. Heydarnezhad, S. and Ranjbarfordoei, A. 2014. Effects of salt stress on growth characteristics and ion accumulation in saltwort plants (Seidlitzia rosmarinus L.). - Desert Ecosyst. Engin. J. 3: 1-10.
15. Kamkar, A., Ardekani, M.R.S., Shariatifar, N., Misagi, A., Nejad, A.S. M. and Jamshidi, A.H. 2013. Antioxidative effect of Iranian Pulicaria gnaphalodes L. extracts in soybean oil. - South Afric. J. Bot. 85: 39-43. [DOI:10.1016/j.sajb.2012.12.001]
16. Karam, M.A., Abd-Elgawad, M.E. and Ali, R.M. 2016. Differential gene expression of salt-stressed Peganum harmala L. - J. Genet. Eng. Biotechnol. 14: 319-326. [DOI:10.1016/j.jgeb.2016.10.005]
17. Khan, M.A. 2003. An ecological overview of halophytes from Pakistan. -In: Lieth, H. (ed.), Cash crop halophytes: Recent studies. 167-187. - Springer, Dordrecht. [DOI:10.1007/978-94-017-0211-9_20]
18. Khan, M.A., Böer, B., Kust, G.S. and Barth H.J. 2006. Sabkha Ecosystems: Volume II: West and Central Asia. - Springer, Netherlands, 263 pp. [DOI:10.1007/978-1-4020-5072-5]
19. Khan, M.A., Ozturk, M., Gul B. and Ahmed, M.Z. 2015. Halophytes for food security in dry lands. -Academic Press, Elsevier Inc., 360 pp.
20. Klute, A. 1986. Methods of soil analysis. Part 1. Physical and mineralogical methods. - American Society of Agronomy inc., USA, 1188 pp. [DOI:10.2136/sssabookser5.1.2ed.c9]
21. Kotuby-Amacher, J., Koenig, R. and Kitchen, B. 2000. Salinity and plant tolerance. - Electronic Publication AG-SO-03, Utah State University Extension, Logan. 8 pp.
22. Liang, L., Liu, W., Sun, Y., Huo, X., Li, S. and Zhou, Q. 2017. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. - Environ. Rev. 25: 269-281 [DOI:10.1139/er-2016-0063]
23. Malik, M., Mustafa, M.A., and Letey, J. 1992. Effect of mixed Na/Ca solutions on swelling, dispersion and transient water flow in unsaturated montmorillonitic soils. - Geoderma. 52: 17-28. [DOI:10.1016/0016-7061(92)90072-F]
24. Mangalassery, S., Dayal, D., Kumar, A., Bhatt, K., Nakar, R., Kumar, A., Singh, J.P. and Misra, A.K. 2017. Pattern of salt accumulation and its impact on salinity tolerance in two halophyte grasses in extreme saline desert in India. - Ind. J. Exp. Biol. 55: 542-548
25. Manousaki, E. and Kalogerakis, N. 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. - Ind. Eng. Chem. Res. 50: 656-660. [DOI:10.1021/ie100270x]
26. Marrugo-Negrete, J., Marrugo-Madrid, S., Pinedo-Hernández, J., Durango-Hernández, J. and Díez, S. 2016. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. - Sci. total environ. 542: 809-816. [DOI:10.1016/j.scitotenv.2015.10.117]
27. Marschner, P. 2012. Marschner's Mineral Nutrition of Higher Plants. 3rd Edition. - Academic Press, USA, pp 651.
28. Mohamed Ahmed, M.S. 1997. Impact of diluted Red Sea water, irrigation frequency and organic mulch on Millet and Sorghum growth in a sandy soil. - University of Kordofan, Sudan, 71 pp.
29. Mozaffarian, V. 1996. A dictionary of Iranian plant names. - Farhang Mo'aser, Iran, 671 pp.
30. Naseem, S., Bashir, E., Shireen, K. and Shafiq, S. 2009. Soil-plant relationship of Pteropyrum olivieri, a serpentine flora of Wadh, Balochistan, Pakistan and its use in mineral prospecting. - Studia UBB Geologia. 54: 33-39. [DOI:10.5038/1937-8602.54.2.7]
31. Nouri, J., Lorestani, B., Yousefi, N., Khorasani, N., Hasani, A., Seif, F. and Cheraghi, M. 2011. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). - Environ. Earth Sci. 62: 639-644. [DOI:10.1007/s12665-010-0553-z]
32. Page, A.L., Miller, R.H. and Keeney, D.R. 1994. Methods of soil analysis. Part 2. Chemical and microbiological properties. - Soil Science Society of America, Inc., Madison, Wisconsin, USA. 1159 pp.
33. Pardo, J.M., Cubero, B., Leidi, E.O. and Quintero. F.J. 2006. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. - J. Exp. Bot. 57: 1181-99. [DOI:10.1093/jxb/erj114]
34. Phondani, P.C., Bhatt, A., Elsarrag, E. and Alhorr, Y.M. 2015. Seed germination and growth performance of Aerva javanica (Burm. f.) Juss ex Schult. - J. Appl. Res. Medic. Aromat. Plants. 2: 195-199. [DOI:10.1016/j.jarmap.2015.08.002]
35. Piri sahragard, H., Zare Chahuoki, M. A. and Azarnivand, H. 2016. Developing predictive distribution map of plant species habitats using logistic regression (Case study: Khalajestan rangelands of Qum province). - J. Rangel. 9: 222-234.
36. Rabhi, M., Hafsi, C., Lakhdar, A., Hajji, S., Barhoumi, Z., Hamrouni, M.H., Abdelly, C. and Smaoui, A. 2009. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. - Afric. J. Ecol. 47: 463-468. [DOI:10.1111/j.1365-2028.2008.00989.x]
37. Samejo, M.Q., Memon, S., Bhanger, M.I. and Khan, K.M. 2012. Chemical compositions of the essential oil of Aerva javanica leaves and stems. - Pak. J. Anal. Environ. Chem. 13: 5. [DOI:10.1007/s10600-012-0417-8]
38. Schütz, W. and Milberg, P. 1997. Seed germination in Launaea arborescens: a continuously flowering semi-desert shrub. - J. Arid Environ. 36: 113-122. [DOI:10.1006/jare.1996.0201]
39. Sharma, A., Gontia, I., Agarwal, P.K. and Jha, B. 2010. Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. - Marine Biol. Res. 6: 511-518. [DOI:10.1080/17451000903434064]
40. Sumner, M.E. 1993. Sodic soils-New perspectives. - Soil Res. 31: 683-750. [DOI:10.1071/SR9930683]
41. Taiz, L. and Zeiger, E. 2002. Plant Physiology. - Sinauer Associates, Sunderland. 623 pp.
42. Tavakkoli, E., Rengasamy, P. and McDonald, G.K. 2010. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. - J. Exp. Bot. 61: 4449-4459. [DOI:10.1093/jxb/erq251]
43. Teimouri, A. and Jafari, M. 2010. The effects of salinity stress on some of anatomical and morphological characteristics in three Salsola species: S. rigida, S. dendroides, S. richteri. - Iran. J. Range Desert Res. 17: 21-34.
44. Uddin, A.H., Khalid, R.S., Alaama, M., Abdualkader, A.M., Kasmuri, A. and Abbas, S. 2016. Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry. - J. Anal. Sci. Technol. 7: 1-7 . [DOI:10.1186/s40543-016-0085-6]
45. Waisel, Y. 1972. Biology of halophytes. 395pp: Academic Press, New York and London.
46. Yensen, N.P. 2008. Halophyte uses for the twenty-first century. - In: Khan M.A. and Weber D.J. (eds.). Ecophysiology of high salinity tolerant plants. 367-396. - Springer, Dordrecht. [DOI:10.1007/1-4020-4018-0_23]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb