Volume 6, Issue 1 (5-2019)                   nbr 2019, 6(1): 116-123 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khosravi S, Koobaz P, Naderi D, Mojtahedi N, Sadeghi A. In vitro studies on effects of Ferrioxamine B on chickpea (Cicer arietinum L.) growth and chlorophyll content . nbr 2019; 6 (1) :116-123
URL: http://nbr.khu.ac.ir/article-1-2932-en.html
ABRII , aksadeghi@abrii.ac.ir
Abstract:   (4960 Views)

The availability of iron for roots has been demonstrated as a critical factor in plant production. The addition of synthetic iron chelates to soil is a common practice in agriculture, which is not economically beneficial. Besides, chemical iron fertilizers cause many problems such as food contamination and environmental pollution. Development of natural Ferrioxamine B as an efficient and safe iron source may be the best strategy to overcome plant iron deficiency and prevention of synthetic agent pollution. The present study investigates the ability of a hydroxamate type siderophores (Ferrioxamine B) as a substitute Fe source during tissue culture of chickpea plants. For this purpose, embryo axes from chickpea seeds were surface sterilized and cultured in 1/2MS and MS culture media including 3% sucrose and 0.8% agar with Ferrioxamine B or Fe–EDTA. The root and shoot length, shoot and root dry weight, total fresh and dry weight, as well as chlorophylls a and b were analysed. Results indicated that Ferrioxamine B did not increase chlorophylls a and b in comparison with Fe-EDTA. However, rooting (22%), total dry weight (38%) and root (75%) and shoot (22%) dry weight significantly (p≤0.05) increased in MS containing Ferrioxamine B in comparison with Fe-EDTA. Consequently, Ferrioxamine B is introduced as a cost-effective and applicable Fe source to favour iron deficiency in vitro.

Full-Text [PDF 1003 kb]   (1196 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2017/08/13 | Revised: 2019/05/6 | Accepted: 2018/10/15 | Published: 2019/04/30 | ePublished: 2019/04/30

References
1. Abo-Rady, M.D.K. 1988. Effect of iron deficiency on growth, micronutrient status and chlorophyll content of vinca rosea grown in calcareous soils. - Arid. Land. Res. Manag. 2: 275 -283. [DOI:10.1080/15324988809381181]
2. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. - Plant. Physiol. 24: 1-150. [DOI:10.1104/pp.24.1.1]
3. Barton, L.L. and Abadía, J. 2006. Iron nutrition in plants and rhizospheric microorganisms. - Springer, Netherlands pp: 103-128. [DOI:10.1007/1-4020-4743-6]
4. Bienfait, H.F., Garcia-Mina, J. and Zamareno, A.M. 2004. Distribution and secondary effects of EDDHA in some vegetable species. - J. Soil. Sci. Plant. Nut. 50: 1103-1110. [DOI:10.1080/00380768.2004.10408581]
5. Bloemberg, G.V. and Lugtenberg, B.J.J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. - Curr. Opin. Plant. Biol. 4: 343-350. [DOI:10.1016/S1369-5266(00)00183-7]
6. Bricker, B. 1991. MSTATC: A microcomputer program for the design, management and analysis of agronomic research experiments. - Crop and Science Department, MSU, East Lansing MI 48824, USA.
7. Cline, G.R., Reid, C.P., Powell, P.E. and Szaniszlo, P.J. 1984. Effects of a hydroxamate siderophore on iron absorption by sunflower and sorghum. - Plant. Physiol. 76: 36-39. [DOI:10.1104/pp.76.1.36]
8. Crowley, D.E., Patrick reid, C.P. and Szaniszlo, P.J. 1988. Utilization of microbial siderophores in iron acquisition by oat. - Plant Physiol. 87: 680-685. [DOI:10.1104/pp.87.3.680]
9. Crowley, D.E., Wang, Y.C., Reid, C.P.P. and Szaniszlo, P.J. 1991 Mechanisms of iron acquisition from siderophores by microorganisms and plants. - Plant Soil 130: 179-198. [DOI:10.1007/BF00011873]
10. Duran, N.M., Medina-Llamas, M., Cassanji, J.G.B., de Lima, R.G., de Almeida, E., Macedo, W.R., Mattia, D. and Pereira de Carvalho, H.W. 2018. Bean seedling growth enhancement using magnetite nanoparticles. - J. Agr. Food. Chem. 66: 5746-5755. [DOI:10.1021/acs.jafc.8b00557]
11. Fernández, V. and Ebert, G. 2005. Foliar iron fertilization-a critical review. - J. Plant Nutr. 28: 2113-2124. [DOI:10.1080/01904160500320954]
12. Guerinot, M.L. and Yi, Y. 1994. Iron: Nutritious, noxious, and not readily available. - Plant Physiol. 104: 815-820. [DOI:10.1104/pp.104.3.815]
13. Hashemimajd, K. and Jamaati-e-Somarin, S. 2011. Investigating the effect of iron and zinc enriched vermicompost on growth and nutritional status of peach trees. - Sci. Res. Essays. 6: 5004-5007.
14. Kraemer, S. M. 2004. Iron oxide dissolution and solubility in the presence of siderophores. - Aquat. Sci. 66: 3-18. [DOI:10.1007/s00027-003-0690-5]
15. Lindsay, W.L. 1995. Chemical reactions in soils that affect iron availability to plants. A quantitative approach, In J. Abadía (ed.), Iron nutrition in soils and plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp: 7-14. [DOI:10.1007/978-94-011-0503-3_2]
16. Lucena, J.J. 2003. Fe chelates for remediation of Fe chlorosis in strategy I plants. - J. Plant. Nutr. 26: 1969-1984. [DOI:10.1081/PLN-120024257]
17. Mahrokh, A., Azizi, F., Sadeghi, A. and Karimi, A. 2011. Effect of application of Streptomyces bacterium on grain yield and its components of maize cv. KSC260 under drought stress conditions. - Seed. Plant. Prod. J. 27: 165-181.
18. Mawji, E., Gledhill, M., Milton, J.A., Tarran, G.A., Ussher, S., Thompson, A., Wolff, G.A., Worsfold, P.J. and Achterberg, E.P. 2008. Hydroxamate siderophores: Occurrence and importance in the Atlantic Ocean. - Environ. Sci. Technol. 42: 8675-8680. [DOI:10.1021/es801884r]
19. Mobarra, N., Shanaki, M., Ehteram, H., Nasiri, H., Sahmani, M., Saeidi, M., Goudarzi, M., Pourkarim, H. and Azad, M. 2016. A Review on iron chelators in treatment of iron overload syndromes. - Int. J. Hematol. Oncol. Stem. Cell. Res. 10: 239-247.
20. Muller, G. and Roymond, K.N. 1984. Specificity and mechanism of Ferrioxamine mediated iron transport in Streptomyces pilosus. - J. Bacteriol. 160: 304-312.
21. Neilands, J.B. 1981. Microbial iron compounds. - Annu. Rev. Biochem. 50: 715-731. [DOI:10.1146/annurev.bi.50.070181.003435]
22. Parveen, S., Gupta, D.B., Dass, S., Kumar, A., Pandey, A., Chakraborty, S. and Chakraborty, N. 2016. Chickpea ferritin cafer1 participates in oxidative stress response, and promotes growth and development. - Sci. Rep. 6: 312-18. [DOI:10.1038/srep31218]
23. Powell, P.E., Cline, E.R., Reid, C.P.P. and Szaniszlo, P.J. 1980. Occurrence of hydroxamate siderophore iron chelators in soils. - Nature 287: 833-834. [DOI:10.1038/287833a0]
24. Raychaudhuri, N., Das, S.K. and Chakrabartty, P.K. 2005. Symbiotic effectiveness of a siderophore overproducing mutant of Mesorhizobium cicero. - Pol. J. Microbiol. 54: 37-41.
25. Romheld, V., and Marschner, H. 1986. Mobilization of iron in the rhizosphere of different plant species. - Adv. Plant. Nutr. 2: 155-204.
26. Sadeghi, A., Karimi, E., Dahaji, P.A., Javid, M.G., Dalvand, Y. and Askari, H. 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. - World. J. Microbiol. Biotechnol. 28: 1503-1509. [DOI:10.1007/s11274-011-0952-7]
27. Sadeghi, A., Hesan, A.R., Askari, H., Naderi Qomi, D., Farsi, M. and Majidi Hervan, E. 2009. Biocontrol of Rhizoctonia solani damping off of sugar beet with native Streptomyces strains under field conditions. - Biocontrol. Sci. Techn.19: 985-991. [DOI:10.1080/09583150902912665]
28. Spiller, S., Castlefranco, A. and Castlefranco, P. 1982. Effects of iron and oxygen on chlorophyll biosynthesis. In vivo observations on iron and oxygen-deficient plants. - Plant. Physiol. 69: 107-111. [DOI:10.1104/pp.69.1.107]
29. Tottey, S., Block, M., Allen, M., Westergren, T., Albrieux, C., Scheller, H., Merchant, S. and Jensen, P. 2003. Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. - Proc. Natl. Acad. Sci. 100: 16119-16124. [DOI:10.1073/pnas.2136793100]
30. Wang, Y., Brown, H.N., Crowley, D.E. and Szaniszlo, P.J. 1993. Evidence for direct utilization of a Siderophore, Ferrioxamine B in axenically grown cucumber. - Plant. Cell Environ. 16: 579-585. [DOI:10.1111/j.1365-3040.1993.tb00906.x]
31. Wang, Y., Deng, L., Caballero-Guzman, A. and Nowack, B. 2016. Are engineered nano iron oxide particles safe? an environmental risk assessment by probabilistic exposure, effects and risk modeling. - Nanotoxicol. 10: 1545-1554. [DOI:10.1080/17435390.2016.1242798]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb