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Objective: The human body functions as an intelligent system, constantly striving to
maintain its internal balance and stability while preventing disorder (entropy). The brain,
as the command this system, is responsible coordinating the body's organs to maintain
stability and equilibrium. However, continuous changes in environmental or
physiological conditions can challenges to the brain. If the brain cannot quickly adapt to
these changes, it may lead to increased entropy and, in severe cases, the collapse of the
body's systems and even death. Coma is a complex condition resulting from severe brain
injuries such as stroke, traumatic brain injury, infections, or oxygen deprivation. This
condition not only profoundly impacts patients' quality of life but It also imposes
significant costs.

Method: Current treatments for coma are largely limited to life support and rehabilitation,
highlighting a need for innovative therapeutic approaches.

Results: psychedelic compounds such as psilocybin have garnered attention due to their
potential to promote neural repair and brain network reconstruction. Psilocybin, an active
compound found in "magic mushrooms,” works by activating serotonin receptors
(particularly HT2A) and upregulating neurotrophic factors such as BDNF. These
mechanisms enable psilocybin to reduce neural inflammation and enhance neurogenesis
and synaptogenesis.

Conclusions: Psilocybin offer new hope for the development of effective treatments.
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Introduction

The human body functions as an intelligent system, constantly striving to maintain its stability
and internal balance while avoiding disorder (entropy) (Aoki, 1989; McFarland et al, 2016).
The brain, as the command center of this system, is responsible for controlling and coordinating
the body's organs to ensure stability and equilibrium. As a highly sensitive organ, the brain is
influenced by various internal and external factors, such as environmental conditions, and
adjusts its commands to optimize the body's performance. When disorder arises within the
system, the brain selects the best strategy to restore stability and prevent further damage
(McEwen, 2017; Sennesh et al., 2022).

However, continuous changes in environmental or physiological conditions can pose significant
challenges to the brain. If the brain cannot quickly adapt to new conditions, it may lead to a
lack of coordination in the body's regulatory functions, increasing the system's entropy. In
severe cases, this rise in entropy can result in the collapse of the body's systems and even death,
as the time required for system recalibration is often too prolonged (McEwen, 2007; Kleckner
etal, 2017).

Since the body operates as an intelligent system, the brain's ability to swiftly choose the optimal
path to regulate bodily functions ensures the system's stability (McEwen, 2007; Kleckner et al,
2017).

Coma is a complex and debilitating condition resulting from severe brain injuries such as stroke,
traumatic brain injury, infections, or oxygen deprivation. if this condition is left untreated or
slow to improve, it can cause disruption to other systems and death (Laureys & Schiff, 2012;
Edlow et al, 2021).

In recent years, psychedelic compounds such as psilocybin have garnered attention due to their
potential to promote neural repair and brain network reconstruction. Psilocybin, an active
compound found in "magic mushrooms,"” acts by activating serotonin receptors (particularly
Hydroxytryptamine Receptor 2A (HT2A) ) and upregulating neurotrophic factors such as
BDNF. These mechanisms enable psilocybin to reduce neural inflammation, enhance
neurogenesis and synaptogenesis, and improve functional connectivity patterns in the brain—
factors that are critically important for patients in a coma (Carhart-Harris & Goodwin, 2017;
Ly et al., 2018; Zhao et al., 2024).

Given the central role of integrated brain networks in maintaining consciousness, along with
emerging evidence of psilocybin's ability to induce neuroplasticity, investigating the effects of
this compound as a novel therapeutic strategy for coma patients appears both imperative and
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promising. This review could open new avenues for restoring neuro-somatic homeostasis in
such individuals.

Mechanisms of Action of Psilocybin

Psilocybin, a naturally occurring psychedelic compound found in certain species of mushrooms,
primarily exerts its effects through the activation of serotonin receptors, particularly the HT2A
subtype. These receptors are widely distributed in the cerebral cortex and play a key role in
regulating neural activity. The activation of these receptors by psilocybin leads to increased
activity of glutamatergic neurons in the cortex, resulting in the release of glutamate and the
enhancement of synaptic signaling (Carhart-Harris et al., 2012; Smausz et al., 2022).

In addition, psilocybin upregulates the expression of neurotrophic factors such as BDNF (brain-
derived neurotrophic factor), which plays a critical role in neuronal repair and regeneration.
BDNF, as a key molecule in neuroplasticity, promotes dendritic growth, the formation of new
synapses, and neuronal survival. Furthermore, psilocybin reduces levels of inflammatory
cytokines such as TNF-oa and IL-1p, thereby mitigating neuroinflammation and preventing
secondary damage to brain tissue (Flanagan & Nichols, 2018; Zanikov et al., 2023).

Neuroimaging studies (fMRI) have also demonstrated that psilocybin can improve functional
connectivity patterns in the brain, particularly within the default mode network (DMN). This
network plays a crucial role in coordinating brain activity and maintaining neural balance, and
its dysfunction is associated with numerous neuropsychiatric disorders (Carhart-Harris et al.,
2014; Tagliazucchi et al., 2016; Doss et al., 2021).

Psilocybin, due to its unique molecular structure, exhibits significant antioxidant properties .
This compound, with its active functional groups such as hydroxyl (OH) and amine (NH2),
demonstrates a high capacity for scavenging and neutralizing free radicals. Free radicals are
recognized as primary contributors to oxidative stress and neuronal cell damage. By reducing
the levels of these radicals, psilocybin prevents cellular degradation and contributes to
neuroprotection and inflammation reduction. These properties position psilocybin as a
promising compound in the treatment of neurological disorders (Carhart-Harris & Goodwin,
2017; Ly et al., 2018).

The Impact of Psilocybin on Neurogenesis and Synaptogenesis

Psilocybin stimulates the proliferation and differentiation of neural stem cells through signaling
pathways associated with the mTOR protein (mechanistic target of rapamycin in mammals).
MTOR is a key regulator of cellular growth, protein synthesis, and neuroplasticity. The
activation of this pathway by psilocybin leads to the increased expression of neurotrophic
factors such as BDNF (brain-derived neurotrophic factor), which plays a vital role in
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neurogenesis (the generation of new neurons) and synaptogenesis (the formation of new
synapses) (Ly et al., 2018; de Vos et al., 2021).

Molecular Mechanisms of Synaptogenesis by Psilocybin

1. Activation of HT2A Serotonin Receptors:

Psilocybin binds to HT2A serotonin receptors in cortical neurons, triggering intracellular
signaling pathways. This activation increases the levels of glutamate, an excitatory
neurotransmitter, at synapses. Glutamate, by binding to AMPA and NMDA receptors, induces
neuronal membrane depolarization and activates calcium-dependent pathways (Carhart-Harris
et al., 2012; Szpregiel & Bysiek, 2024).

2. Upregulation of BDNF Expression:

Psilocybin enhances the expression of BDNF, which plays a central role in promoting
synaptogenesis. BDNF binds to TrkB receptors (tyrosine kinase B receptors), activating
intracellular signaling pathways such as PI3K/Akt and MAPK/ERK. These pathways, in turn,
increase the synthesis of proteins essential for the formation of new synapses, including
synapsin and PSD-95 (postsynaptic density protein 95) (Nagahara & Tuszynski, 2011; Shafiee
et al., 2024, retracted 2025).

3. Enhancement of Dendritic Growth and Synapse Formation:

BDNF also promotes dendritic growth and increases the number of dendritic spines, which
are the sites of new synapse formation. This process occurs through the activation of calcium-
dependent pathways and the regulation of genes associated with synaptic structure (Park & Poo,
2013; Shao et al., 2021).

4. Reduction of Neuroinflammation:

Psilocybin reduces levels of inflammatory cytokines such as TNF-a and IL-1p, creating a
favorable environment for synaptogenesis. Neuroinflammation is a major inhibitor of new
synapse formation, and its suppression by psilocybin enhances neuroplasticity processes
(Flanagan & Nichols, 2018).
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Damaged neuron @ Psilocybin ¥ Neurogenesis

Damaged neuron (left): Depicts neuronal degeneration following hypoxic/ischemic injury

psilocybin (center): The compound selectively accumulates in injured regions (red arrow), activating 5-HT2A receptors and upregulating BDNF

Neurogenesis (right): Demonstrates reconstructed neural networks with new dendritic spines

Figure Y. Emerging evidence suggests that psilocybin, through a mechanism involving its preferential
accumulation in damaged neural regions and activation of serotonergic 5-HT2A receptors, induces the expression
of Brain-Derived Neurotrophic Factor (BDNF). This process, in turn, holds the potential to reverse the course of
neurodegeneration and induce both neurogenesis and synaptogenesis, ultimately leading to the reconstruction and
repair of neural networks (Vargas et al., 2023).

Method
Clinical and preclinical studies

Preclinical and clinical studies have demonstrated thatpsilocybin can reduce neuroinflammation
and oxidative stress. In animal models, the administration of psilocybin has been shown to
upregulate the expression of neurotrophic factors and promote neuronal network regeneration,
leading to improved neural plasticity. Furthermore, psilocybin has been found to induce
significant changes in cognitive and emotional functioning (De Gregorio et al., 2021).

Research has also highlighted that 5-HT2A receptors (5-HT2AR), which are located within
neural cells, play a pivotal role in mediating neuroplasticity. These receptors are critically
involved in the antidepressant effects of psilocybin, underscoring their importance in
modulating mood and cognitive processes (Carhart-Harris & Nutt, 2017).

Given that 5-HT2AR functions as an intracellular receptor, ligands must effectively cross the
cell membrane to access and activate these receptors. Psilocybin, a lipophilic molecule, is
capable of efficiently penetrating the cell membrane due to its chemical properties. To
experimentally validate this mechanism, Maxemiliano V. Vargas et al., a study in which they
systematically modified the membrane permeability of specific ligands. They transformed
membrane-permeable compounds, including DMT, psilocin (PSI), and ketanserin (KTSN), into
their membrane-impermeable analogs: TMT, psilocybin (PSY), and methylated ketanserin
(MKTSN). Remarkably, these modified ligands maintained a high binding affinity for 5-
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HT2ARs, demonstrating that the intracellular localization of these receptors is essential for their
functional activity.

In the subsequent phase of the experiment, embryonic rat cortical neurons were treated with 1
UM of DMT and PSI, as well as their membrane-impermeable counterparts, under conditions
both with and without electroporation. The results demonstrated that membrane-permeable 5-
HT2AR agonists effectively promoted dendritogenesis irrespective of whether electroporation
was applied. In contrast, the membrane-impermeable compounds only induced neuronal growth
when electroporation was employed to facilitate their intracellular delivery (Vargas et al.,
2023).

The serotonergic system plays a critical role in hippocampal (HPC)-dependent learning
processes. Studies have shown that the administration of SSRIs (selective serotonin reuptake
inhibitors) can alter performance in learning tasks that rely on the hippocampus (Flood &
Cherkin, 1987; Popova et al., 2017). For instance, in a knockout (KO) mouse model, mice with
central 5-HT deficiency exhibited enhanced contextual fear conditioning, which was reversed
by intracerebroventricular microinjection of 5-HT (Dai et al., 2008; Fonseca et al., 2015)
.Similarly, 5-HT1A receptor KO mice displayed impaired learning in the Morris water maze,
along with functional abnormalities in the hippocampus (Sarnyai et al., 2000). Activation of 5-
HT1A receptors in the medial septum has also been shown to modulate encoding and
consolidation in HPC-dependent memory tasks (Koenig et al., 2008). Additionally, LSD
(lysergic acid diethylamide) has been found to facilitate learning in brightness discrimination
reversal tasks (King et al., 1972; King et al., 1974; Torrado Pacheco et al., 2023).

Evidence further suggests that neurogenesis in the dentate gyrus (DG) of the hippocampus
significantly influences performance in HPC-dependent learning tasks(van Praag et al., 2002;
van Praag et al., 1999; Nilsson et al., 1999; Shors et al., 2001; Shors et al., 2002). This was
elegantly demonstrated by Shors et al. (2001, 2002), who used methylazoxymethanol acetate
(MAM), an antimitotic agent, to eliminate progenitor cells in the DG before testing mice on
both HPC-dependent and HPC-independent learning tasks. MAM-treated animals exhibited
significantly fewer BrdU+ cells in the subgranular zone (SGZ) but showed no impairment in
spatial navigation (an HPC-dependent task) or delay eyeblink conditioning (an HPC-
independent task). This indicates that the hippocampal progenitor cell population is not
essential for these specific tasks. However, MAM treatment severely impaired performance in
trace fear conditioning and trace eyeblink conditioning, providing strong evidence for the
involvement of DG progenitor cells in trace classical conditioning. These findings highlight the
importance of hippocampal neurogenesis in specific forms of learning and memory, particularly
those involving trace conditioning, while also underscoring the role of the serotonergic system
in modulating these processes(Catlow et al., 2013; Folsz, Trouche, & Croset, 2023).

In this study, the effects of psilocybin on hippocampal neurogenesis (the production of new
neurons) and the extinction of trace fear conditioning in mice were investigated. The main
objective was to determine whether psilocybin, by acting on serotonin receptors (particularly
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5-HT2A), could influence the generation of new neurons and the process of fear extinction.
Mice were subjected to fear conditioning, and then fear extinction and the number of new cells
in the hippocampus were measured. The results showed that low doses of psilocybin accelerated
fear extinction (Catlow et al., 2013; Alenina & Klempin, 2015).

In a study conducted at Yale University, Ling-Xiao Shao and colleagues investigated the effects
of psilocybin on neural structure and function in the mouse medial prefrontal cortex (mPFC).
To assess the compound's impact on neural plasticity, the researchers first evaluated the head-
twitch response - a behavioral proxy for psychedelic activity - across multiple psilocybin doses
(0.25, 0.5, 1, and 2 mg/kg, i.p.)Results showed that the 1 mg/kg dose elicited the most
pronounced head-twitch response, so this dose was selected for subsequent experiments.The
experiment used Thyl-GFP transgenic mice, in which a subset of layer 5 and 6 pyramidal
neurons in the medial frontal cortex express GFP.Mice were subjected to a prolonged stress
protocol involving inescapable foot shocks.mice were injected with psilocybin (1 mg/kg),
ketamine (10 mg/kg, as a positive control), or saline (as a negative control).Dendritic spines of
these neurons were imaged before and after psilocybin or saline administration over 7 days,
with an additional imaging session one month later.Results revealed that psilocybin induced a
significant increase in dendritic spine density and size, and these changes persisted for at least
one month.Electrophysiological recordings showed that psilocybin increased the frequency of
miniature excitatory postsynaptic currents (mEPSCs), indicating enhanced excitatory
neurotransmission.psilocybin's effects on increasing spine density were observed across
different cortical regions and in both dendritic types (Shao et al., 2021).

Recent clinical studies, such as those conducted at Johns Hopkins University and New York
University, have demonstrated that psychedelics like psilocybin can significantly reduce
symptoms of anxiety and depression in cancer patients, with positive effects lasting up to six
months after a single dose. Additionally, research suggests that psychedelics may help restore
healthy brain connectivity patterns by altering connections within the brain's Default Mode
Network (DMN). Inflammation plays a critical role in the pathophysiology of psychiatric
disorders such as depression and addiction. Animal studies have shown that pro-inflammatory
cytokines like TNF-a and IL-1B can induce depression-like behaviors and social withdrawal.
Furthermore, elevated levels of inflammation are associated with treatment resistance in
depression. Psychedelics, through the activation of 5-HT2A receptors, not only produce rapid
antidepressant effects but also reduce neuroinflammation, potentially preventing the brain from
reverting to a pathological inflammatory state.

Thomas W. Flanagan and Charles D. Nichols designed an experimental study to investigate the
anti-inflammatory effects of 5-HT2A receptor agonists, particularly the compound (R)-DOL.
Their research aimed to explore how activation of the 5-HT2A receptor by psychedelics could
modulate inflammatory pathways, both in cellular and animal models. Aortic smooth muscle
cells from mice were exposed to TNF-o, a potent pro-inflammatory cytokine, to induce
inflammation. The effects of (R)-DOI, a selective 5-HT2A receptor agonist, on this
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inflammation were then examined. (R)-DOI significantly inhibited the expression of
inflammatory genes such as ICAM-1, VCAM-1, and IL-6. It also blocked the activation and
nuclear translocation of the transcription factor NF-xB and the activity of nitric oxide synthase
(NOS). Notably, these anti-inflammatory effects were observed even at very low doses (in the
picomolar range). Mice were sensitized with allergens such as ovalbumin (OVA) to simulate
symptoms of allergic asthma, including lung inflammation, airway hyperresponsiveness
(AHR), and eosinophilia. (R)-DOI was then administered intranasally or intraperitoneally to
the mice. (R)-DOI significantly reduced lung inflammation, AHR, and eosinophil
accumulation. It also inhibited the expression of certain pro-inflammatory cytokines such as
IL-5 and GM-CSF. Interestingly, these anti-inflammatory effects were observed at doses that
did not induce psychedelic behaviors. This study demonstrates that 5-HT2A receptor agonists,
particularly (R)-DOI, exhibit potent anti-inflammatory effects in both models. These
compounds may act through novel mechanisms such as functional selectivity and epigenetic
modulation, highlighting their potential for treating various inflammatory disorders (Flanagan
& Nichols, 2018; Koseli et al., 2025).

Conclusions

Psilocybin, as a naturally occurring psychedelic compound, demonstrates significant potential
in enhancing brain function and promoting neuroregeneration in comatose patients. Preclinical
and clinical studies have indicated that this compound can reduce neuroinflammation and
enhance neurogenesis and synaptogenesis. However, further research is required to confirm the
efficacy and safety of psilocybin in the treatment of comatose patients. This review highlights
that psilocybin could be explored as a novel therapeutic option for severe brain disorders.
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