Volume 10, Issue 4 (3-2024)                   nbr 2024, 10(4): 72-85 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari F, Ganjeali A, Amjadi E. Investigating the effect of inoculation with plant growth promoting bacteria on the morphological, biochemical and nutrient absorption characteristics of Nepeta binaludensis Jamzad. nbr 2024; 10 (4) : 5
URL: http://nbr.khu.ac.ir/article-1-3618-en.html
Ministry of Science , ganjeali@um.ac.ir
Abstract:   (1374 Views)
Nepeta binaludensis jamzad, as a medicinal plant, which is at risk of extinction due to irregular harvesting and damage of its habitat. Four treatments including: 1- inoculation with Azotobacter chooroccum, 2- inoculation with Bacillus cereus and Pseudomonas putida, 3- inoculation with a mix of three bacteria (A. chooroccum + B. cereus + P. putida) and 4 controls (without inoculation), in the form of a completely randomized design with 3 replications in two vegetative growth stages (ten and twenty weeks after sowing). Plant growth-promoting bacteria (PGPB) improved all the evaluated morphological characteristics, including the length and dry weight of the aerial part, total leaf area and root length compared to the control. Also, the results of biochemical investigations showed that in 10 and 20 weeks old plants, the application of PGPB could increase the phenolic and flavonoid compounds and also antioxidant activity. The contain of some elements such as calcium, potassium, phosphorus, iron and magnesium also increased as a result of inoculation with PGPB. Since the PGPB improved the growth and also increased the effective compounds of N. binaludensis plants, they can be introduced as useful bio fertilizers and considered as a good alternative to chemical fertilizers.
Article number: 5
Full-Text [PDF 1195 kb]   (385 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2023/04/29 | Revised: 2024/05/25 | Accepted: 2024/01/8 | Published: 2024/03/13 | ePublished: 2024/03/13

References
1. Ahmad, H. M., Fiaz, S., Hafeez, S., Zahra, S., Shah, A. N., Gul, B. & Wang, X. 2022. Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: A review. Journal of Frontiers in Plant Science 13: 1-19. [DOI:10.3389/fpls.2022.875774]
2. Alipour, Z.T. & Sobhanipour, A. 2012. The Effect of Thiobacillus and Pseudomonas fluorescent Inoculation on maize growth and Fe Uptake. Journal of Annals of Biological Research 3: 1661-1666.
3. Aloo, B. N., Tripathi, V., Makumba, B. A. & Mbega, E. R. 2022. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Journal of Frontiers in Plant Science 13: 1-15. [DOI:10.3389/fpls.2022.1002448]
4. Azimi Mahalleh, A., Sharayei, P. & Azarpazhooh, E. 2020. Optimization of ultrasonic-assisted extraction of bioactive compounds from Nepeta (Nepeta binaludensis Jamzad). Journal of Food Measurement and Characterization. 14: 668-678. [DOI:10.1007/s11694-019-00314-1]
5. Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis 10: 178-182. [DOI:10.38212/2224-6614.2748]
6. Chiappero, J., del Rosario Cappellari, L., Alderete, L. G. S., Palermo, T. B. & Banchio, E. 2019. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Journal of Industrial Crops and Products 139: 1-9. [DOI:10.1016/j.indcrop.2019.111553]
7. Gara, L. D., de Pinto, M. C. & Tommasi, F. 2003. The antioxidant systems vis-a- vis reactive oxygen species during plant-pathogen interaction. Journl of Plant Physiology and Biochemistry 41: 863-870. [DOI:10.1016/S0981-9428(03)00135-9]
8. Gashash, E. A., Osman, N. A., Alsahli, A. A., Hewait, H. M., Ashmawi, A. E., Alshallash, K. S. & Ibrahim, M. F. 2022. 11: 1-16. [DOI:10.3390/plants11202732]
9. Gholami, A., Shahsavani, S. & Nezarat, S. 2009.The Effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Journal of Rangeland Science. 9: 364-377
10. Gonzalez-lopes, J., M. V. Martinez-Toledo, S. Reina. & V. Slmern. 1991. Root exudates of maize and production of auxins, gibberellins, cytokinins, amino acids and vitamins by Azotobacter chroococcum in chemicallydefined media and dialyzed-soil media. Technological and Environmental Chemistry. 33:69-78. [DOI:10.1080/02772249109357748]
11. Goswami, M. & Suresh, D. E. K. A. 2020. Plant growth-promoting rhizobacteria- alleviators of abiotic stresses in soil: a review. Special Issue: Soil Biodiversity in a Rapidly Changing World 30: 40-61. [DOI:10.1016/S1002-0160(19)60839-8]
12. Hashemi Moghaddam, H., Sefidkon, F., Jafari, A. A. & Kalate Jari, S. 2020. Effects of Drying Methods on the Essential Oil Content and Composition of Nepeta binaludensis Jamzad. Journal of Medicinal plants and By-product 9: 207-214.
13. Imran, M., Shahzad, S. M., Arif, M. S., Yasmeen, T., Ali, B. & Tanveer, A. 2020. Inoculation of potassium solubilizing bacteria with different potassium fertilization sources mediates maize growth and productivity. Pakistan Journal of Agricultural Research 57: 1045-1055
14. Kader, M. A., M. H. Main and M. S. Hogue. 2002. Effects of Azotobacter inoculants on the yield and nitrogen uptake by wheat. Journal of Biological Sciences 2:259-261. [DOI:10.3923/jbs.2002.259.261]
15. Kalra, Y. P. 1998. Handbook of Reference Methods for plant analysis. CRC, USA, 85-88. [DOI:10.1201/9780367802233]
16. Khaladgi, M., Jamzad, M. & Mirahmadpour, P. 2018. Total phenolic and flavonoid contents, antioxidant and antimicrobial activity of Nepeta binaludensis Jamzad extracts. Jundishapur Journal of Natural Pharmaceutical Products 13: e58500. [DOI:10.5812/jjnpp.58500]
17. Khalighi Sigarudi, F., Jarvandi, S. & Taghizade, M. 2011. Use of medicinal plants. Tehran: Ketab Arjmand.312 p.p.
18. Kolomiiets, Y., Grygoryuk, I., Likhanov, A., Butsenko, L. & Blume, Y. 2019. Induction of bacterial canker resistance in tomato plants using plant growth promoting rhizobacteria. The Open Agriculture Journal 13: 215-222. [DOI:10.2174/1874331501913010215]
19. Kulisic, T., Rodonic, A., katalinic, V. & Milos, M. 2004. Use of different mettods for testing antioxidative activity of oregano essential oil. Journal of Food Chemistry. 85:663-640. [DOI:10.1016/j.foodchem.2003.07.024]
20. Laxita, L. & Shruti, S. 2020. Isolation and Characterization of Potassium Solubilizing Microorganisms from South Gujarat Region and their effects on Wheat Plant. Archives of agronomy and soil science
21. 59: 1713-1723.
22. Maung, C. E. H., Choub, V., Cho, J. Y. & Kim, K. Y. 2022. Control of the bacterial soft rot pathogen, Pectobacterium carotovorum by Bacillus velezensis CE 100 in cucumber. Korean Journal of Soil Science and Fertilizer 54:297-310.
23. Motaghed, M., Nili-Ahmadabadi, A. & Moradkhani, S. 2022. Assessment of the anti-oxidative potential of Nepeta crispa Willd.(Lamiaceae) and its effects on oxidative stability of virgin sunflower oil under accelerated storage conditions. Journal of Medicinal Plants. 21: 13-27. [DOI:10.52547/jmp.21.82.13]
24. Ozkan, S.B., Wu, G.A., Chodera, J.D. & Dill, K.A. 2007. Protein folding by zipping and assembly. Journal of biophysics and computational biology 104:11987-11992. [DOI:10.1073/pnas.0703700104]
25. Rajaee, S., Alikhani, H. & Urisi, F. 2007. Growth simulator effects of Azotobacter strains on growth, yield and nutrient uptake in wheat. Journal of Agricultural Science and Methods 41:285-296. (In Persian).
26. Raji, M. & Thangavelu, M. 2021. Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Journal of Archives of Microbiology 203: 3147-3161. [DOI:10.1007/s00203-021-02284-9]
27. Rattan, R.S. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29: 913-920. [DOI:10.1016/j.cropro.2010.05.008]
28. Ruiz-Cisneros, M. F., Ornelas-Paz, J. D. J., Olivas-Orozco, G. I., Acosta-Muniz, C. H., Salas-Marina, M. A., Molina-Corral, F, J. & Rios-Velasco, C. 2022. Effect of rhizosphere inoculation with Bacillus strains and phytopathogens on the contents of volatiles and human health-related compounds in tomato fruits. Journal of Food Science and Technology 42. 1-12. [DOI:10.1590/fst.51120]
29. Sakya, A. T., Purnomo, J. & Bima, D. A. 2022. Application of GA3 and PGPRs on growth and antioxidant content of Parijoto (Medinilla verrucosa) in peat soil. In IOP Conference Series: Earth and Environmental Science (Vol. 1016, No. 1, p. 012009). IOP Publishing. [DOI:10.1088/1755-1315/1016/1/012009]
30. Shekhalipour, M., Bolandnazar, S.A. Sarikhani, M.R. & Panahandeh, J. 2018. Effect of application of biofertilizers on yield, quality and antioxidant capacity of tomato fruit. Iranian Journal of Horticultural Science 50: 621-632 .(in Persian).
31. Singh, R., Soni, S.K. & Kalra, A. 2012. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases, improving yield, and forskolin content in Coleus forskohlii Briq. Under organic field conditions. Journal of Mycorrhiza 23: 35- 44. [DOI:10.1007/s00572-012-0447-x]
32. Subramaniam, G., Thakur, V., Saxena, R. K., Vadlamudi, S., Purohit, S., Kumar, V. & Varshney, R. K. 2020. Complete genome sequence of sixteen plant growth promoting Streptomyces strains. Journal of Scientific reports 10: 1-13. [DOI:10.1038/s41598-020-67153-9]
33. Sumbul, A., Ansari, R. A., Rizvi, R. & Mahmood, I. 2020. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi journal of biological sciences 27: 3634-3640. [DOI:10.1016/j.sjbs.2020.08.004]
34. Tith, S., Duangkaew, P., Laosuthipong, C. & Monkhung, S. 2021. Vermicompost efficacy in improvement of cucumber (Cucumis sativus L.) productivity, soil nutrients, and bacterial population under greenhouse condition. Asia- Pacific Journal of science and technology 27: 1- 27.
35. Ureche, M. A. L., Pérez-Rodriguez, M. M., Ortiz, R., Monasterio, R. P. & Cohen, A. C. 2021. Rhizobacteria improve the germination and modify the phenolic compound profile of pepper (Capsicum annum L.). Journal of Rhizosphere 18: 1-8. [DOI:10.1016/j.rhisph.2021.100334]
36. Wen, P. F., Chen, J. Y., Wan, S. B., Kong, W. F., Zhang, P., Wang, W., Zhan, J., Pan, Q. H. & Hung, W. D. 2008 Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Journal of Plant Growth Regulation 55: 1-10. [DOI:10.1007/s10725-007-9250-7]
37. Yang, A. N., Lu, L., Wu, C. X. & Xia, M. M. 2011. Arbuscular mycorrhizal fungi associated with Huangshan Magnolia (Magnolia cylindrica). Journal of Medical Plant Research 5: 4542-4548.
38. Zapata-sifuentes, G., Hernandez - Montiel, L. G., Saenz- mata, J., Fortis- Hernandez, M., Blanco- Conteras, E., Choquito- Conteras, R. & Presiado rangel, P. 2022. Plant Growth-Promoting Rhizobacteria Improve Growth and Fruit Quality of Cucumber under Greenhouse Conditions. Journal of plants. 11: 2-9. [DOI:10.3390/plants11121612]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb