Volume 5, Issue 4 (3-2019)                   NBR 2019, 5(4): 356-364 | Back to browse issues page


XML Persian Abstract Print


University of Guilan
Abstract:   (3670 Views)
In this study, the morphology and organization of the retina of Caspian kutum and fish response to ambient light as retinomotor reaction was investigated. The Rutilus frisii subsp. kutum is an anadromous fish and important native fish specimen of Caspian Sea. The specimens were obtained from Shahid Ansari Teleost Reproduction and Culture center (Guilan province, Iran). For light and dark adaptation fish were left in dark and light at least 30 minute prior to death. The eye retina were dissected out and processed for histological and SEM studies. The eye retina of Caspian kutum like most vertebrates, was composed of ten layers. Two types of photoreceptor cells including rod and short single cone were identified. Sagittal and transverse retinal sections did not show any particular patterns of cone arrangement. The retinomotor response observed in adapted retina to light and dark conditions revealed that Caspian kutum strongly reacts to changing light conditions. A remarkable pigment index indicated kutum relied mostly on rod rather than cone vision. The movement of pigment granules and slight change of cone myoid showed that the fish could recognize colors.

Full-Text [PDF 1142 kb]   (943 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2018/07/24 | Revised: 2019/04/6 | Accepted: 2018/10/3 | Published: 2019/03/18 | ePublished: 2019/03/18

References
1. Ali, M.A., Stevenson, W.R. and Press, J. S. 1961. Histophysiological on the juvenile Atlantic salmon (Salmo salar) retina. Rates of light- and dark adaptation. ‒ Can. J. Zool. 39: 123-128. [DOI:10.1139/z61-015]
2. Ali, M.A. 1971. Retinomotor response: characteristics and mechanisms. ‒ Vision Res. 11: 1225-1288. [DOI:10.1016/0042-6989(71)90010-1]
3. Ali, M.A. 1975. Retinomotor responses. In, Vision in fihes, edited by M.A. Ali, Plenum, New York, pp: 313-355. [DOI:10.1007/978-1-4757-0241-5_30]
4. Ali, M.A. and Klyne, M.A. 1985. Vision in Vertebrates. Plenum Press, New York and London. [DOI:10.1007/978-1-4684-9129-6]
5. Blaxter, J.H. S. and Staines, M. 1970. Pure-cone retinae and retinomotor responses in larval teleosts. ‒ J. Mar. BioL. Assoc. 50: 449-460. [DOI:10.1017/S0025315400004641]
6. Bone, Q. and Moore, R.H. 2003. Biology of Fishes. Taylor and Fransis, 456p.
7. Bozzano, A. and Catalan, I.A. 2002. Ontogenetic changes in the retinal topography of the European hake, Merluccius merluccius: implications for feeding and depth distribution. ‒ Mar. Biol. 141: 549-559. [DOI:10.1007/s00227-002-0840-7]
8. Bozzano, A. and Collin, S.P. 2002. Retinal ganglion cell topography in elasmobranchs. ‒ Br. Behav. Evolu. 55, 191-208. [DOI:10.1159/000006652]
9. Bozzano, A., Murgia, R., Vallerga, S., Hirano, J. and Archer, S. 2001. The photoreceptor system of the retinae of two dogfishes, Scyliorhinus canicula and Galeus melastromus: possible relationship with depth and predatory lifestyle. ‒ J. Fish. Biol. 59: 1258-1278. [DOI:10.1111/j.1095-8649.2001.tb00190.x]
10. Burnside, B., and Basingert, S. 1983. Retinomotor pigment migration in the teleost retinal pigment epithelium. 11. Cyclic-30, 50- adenosine monophosphate induction of dark-adaptive movement in vitro. Invest. Ophthal.Vis. Sci. 24:16-23.
11. Burnside, B., Evans, M., Fletcher, R.T. and Chader G.J. 1982. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3',5'-monophosphate. ‒ J. Gen. Physiol. 79:759-774. [DOI:10.1085/jgp.79.5.759]
12. Dearry, A. and Burnside, B. 1989. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium. ‒ J. Neurochem. 53: 870-878. [DOI:10.1111/j.1471-4159.1989.tb11785.x]
13. Donatti, L. and Fanta, E. 1999. Morphology of the retina in the freshwater fish Metynnis roosevelti Eigenmann (Characidae, Serrasalminae) and the effects of monochromatic red light. ‒ Revta bras. Zool. 16: 151-173. [DOI:10.1590/S0101-81751999000100011]
14. Donatti, L. and Fanta, E. 2007. Retinomotor movements in the Antarctic fish Trematomus newnesi Boulenger submitted to different environmental light conditions. ‒ Revta bras. Zool. 24: 457-462.
15. Easter, S.S. and Macy, A. 1978. Local control of retinomotor activity in the fish retina. ‒ Vis. Res. 18: 937-942. [DOI:10.1016/0042-6989(78)90021-4]
16. Fishelson, L, Ayalon, G, Zverdling, A, and Holzman, R. 2004. Comparative morphology of the eye (with particular attention to the retina) in various species of cardinal fish (Apogonidae, Teleostei). ‒ Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 277: 249-261. [DOI:10.1002/ar.a.20005]
17. Futter, C.E., Ramalho, J.S., Jaissle, G.B., Seeliger, M.W., Miguel, C. and Seabra, M.C. 2004. The role of Rab27a in the regulation of melanosome distribution within retinal pigment epithelial cells. ‒ Mol. Biol. Cell. 15: 2264-2275. [DOI:10.1091/mbc.e03-10-0772]
18. Gegenfurter, K.R., Mayser, H. and Sharpe, L.T. 1999. Seeing movement in the dark. ‒ Nature 398: 475-476. [DOI:10.1038/19004]
19. Gnyubkina, V. P. and Maksimovich, A. A. 2008. The Retinomotor Reaction of the Retina of Young Dog Salmon Oncorhynchus Keta on Adaptation to Light and the Field of a Permanent Magnet. ‒ Neurosci. Behav. Physiol. 38: 821-827. [DOI:10.1007/s11055-008-9058-6]
20. González, A., Crittenden, E.L. and García, D.M. 2004. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill. ‒ BMC Neurosci. 13: 5-23.
21. Hodel, C., Neuhauss, S.C.F. and Biehlmaier, O. 2006. Time course and development of light adaptation processes in the outer zebrafish retina. ‒ Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288: 653-662. [DOI:10.1002/ar.a.20329]
22. John, K.R., Segall, M. and Zawatzky, L. 1967. Retinomotor rhythms in the goldfish, Carassius auratus. ‒ Biol. Bull. 132: 200-210. [DOI:10.2307/1539888]
23. Kawamura, G., Bagarinao, T.U., Justin, J., Chen, C.Y. and Lim, L.S. 2016. Early appearance of the retinal tapetum, cones, and rods in the larvae of the African catfish Clarias gariepinus. ‒ Ichthyol. Res. 6: 1-4. [DOI:10.1007/s10228-016-0513-z]
24. Kopperud, K. L. and Grace, M.S. 2017. Circadian rhythms of retinomotor movement in a marine megapredator, the atlantic tarpon, megalops atlanticus. ‒ IJMS. 18: 1-15.
25. Kolbinger, W., Wagner, D. and Wagner, H. J. 1996. Control of rod retinomotor movements in teleost retinae: The role of dopamine in mediating light-dependent and circadian signals. ‒ Cell Tissue Res. 285: 445-451. [DOI:10.1007/s004410050661]
26. Kröger, R.H.H., Knoblauch, B. and Wagner, H.J. 2003. Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. ‒ J. Exp. Biol. 206: 1643-1648. [DOI:10.1242/jeb.00337]
27. Kusmic, C. and Gualtieri, P. 2000. Morphology and spectral sensitivities of retinal and extra retinal photoreceptors in fresh water teleosts. ‒ Micron. 31: 183-200. [DOI:10.1016/S0968-4328(99)00081-5]
28. Losey, G.S., Cronin, T.W., Goldsmith, T.H., Hyde, D., Marshall, N.J. and McFarland, W.N. 1999. The UV visual world of fishes: a review. ‒ J. Fish Biol. 54: 921-943. [DOI:10.1111/j.1095-8649.1999.tb00848.x]
29. Menger, G.J., Koke, J.R. and Cahill, G.M. 2005. Diurnal and circadian retinomotor movements in zebrafish. ‒ Vis. Neurosci. 22: 203-209. [DOI:10.1017/S0952523805222083]
30. Masuma, S., Kawamura, G., Tezuka, N., Koiso, M. and Namba, K. 2001. Retinomotor responses of juvenile bluefin tuna Thunnus thynnus. ‒ Fish Sci. 67: 228-231. [DOI:10.1046/j.1444-2906.2001.00244.x]
31. McFarland, W.N. 1991. Light in the sea: The optical world of elasmobranchs. ‒J. Exp. Zool. Suppl. 5: 3-12.
32. Myrberg, A. A., Jr., and Fuiman, L.A. 2002. The sensory world of coral reef fishes. Pages 123-148 in P. F. Sale, editor. Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, California. [DOI:10.1016/B978-012615185-5/50009-8]
33. Nag, T.C. and Sur, R.K. 1992. Cones in the retina of the catfish, Clarias batrachus (L.). ‒ J. Fish Biol. 40: 967-969. [DOI:10.1111/j.1095-8649.1992.tb02642.x]
34. Nicol, A.C. 1963. Some aspects of photoreception and vision in fishes. Adv. Mar. Biol. 1: 171-208. [DOI:10.1016/S0065-2881(08)60259-X]
35. Novales, F.I. and Harosi, F.I. 2000. Photoreceptors, visual pigments and ellipsosomes in the killifish Fundulus heteroclitus: a microspectrophotometric and histological study. ‒ Vis. Neurosci. 17: 403-420. [DOI:10.1017/S0952523800173080]
36. Reckel, F., Hoffmann, B., Melzer, R.R., Horppila, J. and Smola, U. 2003. Photoreceptors and cone patterns in the retina of the smelt Osmerus eperlanus (L.) (Osmeridae: Teleostei. ‒ Acta Zool. 84: 161-170. [DOI:10.1046/j.1463-6395.2003.00142.x]
37. Taylor, S., Chen, J., Luo, J. and Hitchcock, P. 2012. Light-induced photoreceptor degeneration in the retina of the zebrafish. Methods Mol. Biol. 884: 247-254. [DOI:10.1007/978-1-61779-848-1_17]
38. Taylor, S. Loew, E and Grace, M.S. 2015. Ontogenic retinal changes in three ecologically distinct elopomorph fishes (elopomorpha:teleostei) correlate with light environment and behavior. ‒ Vis. Neurosci. 32: 1-13. [DOI:10.1017/S0952523815000024]
39. Torisawa, S., Takagi, T., Fukuda, H., Ishibashi, Y., Sawada, Y., Okada, T., Miyashita, S., Suzuki, K. and Yamane, T. 2007. Schooling behaviour and retinomotor response of juvenile Pacific bluefin tuna Thunnus orientalis under different light intensities. ‒ J. Fish Biol. 71: 411-420. [DOI:10.1111/j.1095-8649.2007.01498.x]
40. Vatine, G., Vallone, D., Gothilf, Y., Foulkes, N.S. 2011. It's time to swim! Zebrafish and the circadian clock. FEBS letters 585: 1485-1494. [DOI:10.1016/j.febslet.2011.04.007]
41. Welsh, J.H. and Osborn, C.M. 1937. Diurnal changes in the retina of the catfish Ameiurus nebulosus. ‒ J. Comp. Neurol. 66: 349. [DOI:10.1002/cne.900660206]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.