Volume 6, Issue 4 (1-2020)                   nbr 2020, 6(4): 478-486 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmailnejad N, Khara J, Akhgari M. The effect of magnetized water on the growth and some biochemical parameters of squash (Cucurbita pepo) plants under toxicity of herbicide trifluralin . nbr 2020; 6 (4) :478-486
URL: http://nbr.khu.ac.ir/article-1-3119-en.html
Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran , j.khara@urmia.ac.ir
Abstract:   (5149 Views)

To investigate the effect of herbicide Trifluralin and the role of magnetized water on enzymatic activities and content of proline and growth substances including gibberellin (GA3) and cytokinin (6- benzyl amino purine), an experiment was conducted using squash (Cucurbita pepo L. var. Shiraz Hybrid F1) seedlings. Four levels of trifluralin (0, 5, 15 and 25 ppm) and irrigation by distilled and magnetized water were applied in a completely randomized design in 3 replicates at Urmia University in 2016. Different levels of trifluralin were added to pots 2 days after planting. Seedlings were treated by modified Hoagland solution with diurnal temperature 30:18 °C, relative humidity of 70-80 percent and light period of 16:8 hr, during a 5-week growing period in growth chamber. The effect of magnetized water and trifluralin on ornithine amino-transferase (OAT), proline dehydrogenase (PDH) and content of proline in both shoots and roots as well as GA3 and cytokinin was significant (p>0.01) according to ANOVA. The content of proline and OAT in roots and shoots as well as GA3 and cytokinin increased significantly, although the PDH of roots and shoots decreased under the influence of magnetized water. The content of proline and OAT increased and GA3, cytokinin and the activity of PDH declined by the increase of the levels of trifluralin. Overall, it can be concluded that the growth and biochemical indices of squash plants were improved by magnetized water under toxicity of herbicide trifluralin.
 
Full-Text [PDF 1183 kb]   (1364 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2018/04/18 | Revised: 2020/02/24 | Accepted: 2019/02/12 | Published: 2020/01/8 | ePublished: 2020/01/8

References
1. Alderfasi, A.A., Al-Suhaibani, N.A., Selim, M.M. and Al-Hammad, B.A.A. 2016. Using magnetic technologies in management of water irrigation programs under arid and semi-arid ecosystem. - Adv. Plant Agric. Res. 3: 109-116. [DOI:10.15406/apar.2016.03.00102]
2. Alvarez, S., Marsh, E.L., Schroeder, S.G. and Schachtman, D.P. 2008. Metabolomic and proteomic changes in the xylem sap of maize under drought. - Plant Cell Environ. 31: 325-340. [DOI:10.1111/j.1365-3040.2007.01770.x]
3. Amutha, R., Muthulaksmi, S., Baby Rani, W., Indira, K. and Mareeswari, P. 2007. Studies on biochemical basis of heat tolerance in sunflower (Helianthus annuus L.). - Res. J. Agric. Biol. Sci. 3: 234-238.
4. Anand, A., Nagarajan, S., Verma, A.P.S., Joshi, D.K., Pathak, P.C. and Bhardwaj, J. 2012. Pre- treatment of seeds with static magnetic field ameliorates soil water stress in seedling of maize (Zea mays L.). - Ind. J. Biochem. Biophys. 49: 63-70.
5. Argueso, C.T., Ferreira, F.J. and Kieber, J.J. 2009. Environmental perception avenues: The interaction of cytokinin and environmental response pathways. - Plant Cell Environ. 32: 1147-1160. [DOI:10.1111/j.1365-3040.2009.01940.x]
6. Bhalla, K., Singh, S.B. and Agarwal, R. 2010. Quantitative determination of gibberellins by high performance liquid chromatography from various gibberellins producing Fusarium strains. - Environ. Monit. Assess. 167: 515- 520. [DOI:10.1007/s10661-009-1068-5]
7. Basant, L.M. and Grewal, H.S. 2009. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. - Agric. Water Manage. 96: 1229-1236. [DOI:10.1016/j.agwat.2009.03.016]
8. Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. - Plant Soil. 39: 205-207. [DOI:10.1007/BF00018060]
9. Benekos, K., Kissoudis, C., Nianiou-Obeidat, I., Labrou, N., Madesis, P., Kalamaki, M., Makris, A. and Tsaftaris, A. 2010. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. - J. Biotech. 150: 195-201. [DOI:10.1016/j.jbiotec.2010.07.011]
10. Bielach, A., Hrtyan, M. and Tognetti, V.B. 2017. Plants under stress: Involvement of auxin and cytokinin, Review. - Int. J. Mol. Sci. 18: E1427. doi: 10.3390/ijms18071427. [DOI:10.3390/ijms18071427]
11. Da Silva, J.A.T. and Dobranszki, J. 2014. Impact of magnetic water on plant growth. - Environ. Exp. Biol. 12: 137-142.
12. Davies, W.J., Kudoyarova, G. and Hartung, W. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the Plant's response to drought. - J. Plant Growth Regul. 24: 285-295. [DOI:10.1007/s00344-005-0103-1]
13. Deshpande, M. 2014. Effect of magnetic water on growth of legumes. - Euro. J. App. Eng. Sci. Res. 3: 9-12.
14. Durgesha, M. 1993. Effect of fluchloralin on protein synthesis, free amino acids and hydroxyproline content in groundnut (Arachis hypogaea L.). - Ann. App. Biol. 123: 703-708. [DOI:10.1111/j.1744-7348.1993.tb04940.x]
15. El Sayed, H. and El Sayed, A. 2014. Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. - Am. J. Exp. Agric. 4: 476-496. [DOI:10.9734/AJEA/2014/7468]
16. El-Sayed, H.E.S.A. 2015. Impact of magnetic water irrigation to improve the growth, chemical composition and yield production of broad bean (Vicia faba L.) plant. - Nat. Sci. 13: 107-119.
17. Gao, Y., Sun, Y., Zhang, R. and Chu, G. 2017. Effects of magnetic water irrigation on the growth, N uptake and antioxidant enzyme activities of cotton seedlings. - J. Agric. Sci. Technol. 7: 25-33. [DOI:10.17265/2161-6264/2017.01.003]
18. Gomes, F.P., Oliva, M.A., Mielke, M.S., Almeida, A.A.F. and Aquino, L.A. 2010. Osmotic adjustment, proline accumulation and membrane stability in leaves of Cocos nuciera submitted to drought stress. - Sci. Horti. 126: 379-384. [DOI:10.1016/j.scienta.2010.07.036]
19. Hajnorouzi, A., Vaezzadeh, M., Ghanati, F., Jamnezhad, H. and Nahidian, B. 2011. Growth promotion and a decrease of oxidative stress in maize seedlings by a combination of geomagnetic and weak electromag-netic fields. - J. Plant Physiol. 168: 1123-1128. [DOI:10.1016/j.jplph.2010.12.003]
20. Hashemabadi, D., Zaredost, F. and Jadid Solimandarabi, M. 2015. The effect of magnetic water and irrigation intervals on the amount of the nutrient elements in soil and aerial parts of periwinkle (Catharanthus roseus L.). - J. Ornament. Plant. 5: 139-149.
21. Horst, V. 2004. Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants in suppressed after a critical level of root colonization. - Plant Physiol. 161: 339-341. [DOI:10.1078/0176-1617-01097]
22. Hoseini, M., Ghorbani, R. and Bagheri, A. 2011. Evaluate the performance of different herbicides to control weeds in garlic. - Iran Agric. Res. 9: 463-473.
23. Hozayn, M. and Abdul Qados, A.M.S.A. 2010. Magnetic water application for improving wheat (Triticum aestivum L.) crop production. - Agric. Biol. J. North Am. 1: 677-682.
24. Iqbal, M., Haq, Z.U., Jamil, Y. and Ahmad, M.R. 2012. Effect of presowing magnetic treatment on properties of pea. - Int. Agrophys. 26: 25-31. [DOI:10.2478/v10247-012-0004-z]
25. Lopez-Carrion, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M. and Romero, L. 2008. Role of nitric oxide under saline stress: implications on proline metabolism. - Biol. Plant. 52: 587-591. [DOI:10.1007/s10535-008-0117-1]
26. Lubovská, Z., Dobrá, J., Štorchová, H., Wilhelmová, N. and Vanková, R. 2014. Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. - J. Plant Physiol. 171: 1625-1633. [DOI:10.1016/j.jplph.2014.06.021]
27. Madan, S., Nainawatee, H.S., Jain, R.K. and Chowdhury, J.B. 1995. Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. - Ann. Bot. 76: 51-57. [DOI:10.1006/anbo.1995.1077]
28. Maffei, E.M. 2014. Magnetic field effects on plant growth, development, and evolution. - Front. Plant Sci. 5: 1-15. [DOI:10.3389/fpls.2014.00445]
29. Maheshwari, B.L. and Grewal, H.S. 2009. Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. - Agric. Water Manage. 96: 1229-1236. [DOI:10.1016/j.agwat.2009.03.016]
30. Monteoliva, M.I., Rizzi, Y.S., Cecchini, N.M., Hajirezaei, M.R. and Alvarez, M.E. 2014. Context of action of proline dehydrogenase (ProDH) in the hypersensitive response of Arabidopsis. - BMC Plant Biol. 13: 14-21. [DOI:10.1186/1471-2229-14-21]
31. Moradbeigi, H. and Khara, J. 2011. An evaluation of some physiological and biochemical parameters resulting from interaction of herbicide trifluralin and mychorrizal colonization by Glomus versiforme in sunflower plants (cv. Lakomka). - J. Plant Biol. 3: 59-70.
32. Mostafazadeh-Fard, B., Khoshravesh, M., Mousavi, S.F. and Kiani, A.R. 2011. Effects of magnetized water and irrigation water salinity on soil moisture distribution in trickle irrigation. - J. Irri. Drain. Eng. 137: 398-402. [DOI:10.1061/(ASCE)IR.1943-4774.0000304]
33. Moussa, H.R. 2011. The impact of magnetic water application for improving common bean (Phaseolus vulgaris) production. - New York Sci. J. 4: 15-20.
34. Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D.T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T., Sakakibara, H., Schmulling, T. and Tran, L.S. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses and abscisic acid biosynthesis. - Plant Cell. 23: 2169-2183. [DOI:10.1105/tpc.111.087395]
35. Raoofi, M., Mahzari, S., Baghestani, M.A. and Giti, S. 2016. Effects of applying different herbicides dosages Oxyfluorfen and Trifluralin on morphological, economical and biological yield of garlic (Allium sativum L.). - Int. J. Adv. Biol. Biomed. Res. 4: 136-142.
36. Sadeghipour, O. 2015. Magnetized water alleviates drought damages by reducing oxidative stress and proline accumulation in mung bean (Vigna radiata L. Wilczek). - Bull. Environ. Pharmacol. Life Sci. 4: 62-69.
37. Sadeghipour, O. and Aghaei, P. 2013. Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. - J. Bio. & Env. Sci. 3: 37-43.
38. Safaie Ghahnouye, Z., Shahbazi, E., Salavati, A. and Shafeinia, A.R. 2014. An investigation on effect of salinity on expression of proline dehydrogenase gene in canola cv. 401 and double haploid line 3. - 1st Conf. New Find. Environ. Agric. Ecosys. Tehran Univ.
39. Sanchez, E., Lopez-Lefebre, L.R., García, P.C., Rivero, R.M., Ruiz, J.M. and Romero, L. 2001. Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). - J. Plant Physiol. 158, 593-598. [DOI:10.1078/0176-1617-00268]
40. Shashidhar, V.R., Prasad, T.G. and Sudharshan, L. 1996. Hormone signals from roots to shoots of sunflower (Helianthus annuus L.) moderate soil drying increases delivery of abscisic acid and depresses delivery of cytokinins in xylem sap. - Ann. Bot. 78: 151-155. [DOI:10.1006/anbo.1996.0107]
41. Singh, D.K., Sale, P.W.G., Pallaghy, C.K. and Singh, V. 2000. Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration. - New Phytol. 146: 261-269. [DOI:10.1046/j.1469-8137.2000.00643.x]
42. Tiwari, V., Patel, M.K., Chaturvedi, A.K., Mishra, A. and Jha, B. 2016. Functional characterization of the Tau class glutathione S transferases gene (SbGSTU) promoter of Salicornia brachiata under salinity and osmotic stress. - PLoS ONE. 11: e0148494. [DOI:10.1371/journal.pone.0148494]
43. Toteva, T., Slavov, V.S., Batchvarova, R., Batchvarova, A. and Stefanov, D. 2004. Stress markers in chlorsulphouron tolerant transgenic tobacco plants. - Plant Physiol. 30: 103-111.
44. Turker, M., Temirci, C., Battal, P. and Erez, M.E. 2007. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. - Phyton 46: 271-284.
45. Vashisth, A. and Nagarajan, S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. - J. Plant Physiol. 167: 149-56. [DOI:10.1016/j.jplph.2009.08.011]
46. Vojta, P., Kokáš, F., Husiˇcková, A., Grúz, J., Bergougnoux, V., Marchetti, C.F., Jiskrová, E., Ježilová, E., Mik, V., Ikeda, Y. and Galuszka, P. 2016. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. - New Biotechnol. 33: 676-691. [DOI:10.1016/j.nbt.2016.01.010]
47. Werner, T., Nehnevajova, E., Kollmer, I., Novak, O., Strnad, M., Kramer, U. and Schmulling, T. 2010. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance and leaf mineral enrichment in Arabidopsis and tobacco. - Plant Cell. 22: 3905-3920. [DOI:10.1105/tpc.109.072694]
48. Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H. and Schmülling, T. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. - Plant Cell. 15: 2532-2550. [DOI:10.1105/tpc.014928]
49. Zali, H., Hassanlou, T., Sofalian, O., Asghari, A. and Zeinolabedini, M. 2016. Drought stress effect on physiological parameter and amino acids accumulations in canola. - J. Crop Breed. 8: 191-203. [DOI:10.29252/jcb.8.18.191]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb