دوره 5، شماره 2 - ( 6-1397 )                   جلد 5 شماره 2 صفحات 95-105 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebi Bijarpas M, Rostami Shahraji T, samizadeh Lahiji H. Study of antioxidant enzymes activity of Fagus orientalis Lipesk to environmental changes along altitude gradient (Case Study: Gilan forests, Masal). nbr. 2018; 5 (2) :95-105
URL: http://nbr.khu.ac.ir/article-1-3074-fa.html
محبی بیجارپسی محبوبه، رستمی شاهراجی تیمور، سمیع زاده لاهیجی حبیب الله. بررسی فعالیت آنزیم های آنتی اکسیدان راش شرقی Fagus orientalis Lipesky نسبت به تغییرات محیطی در طول گرادیان ارتفاعی (مطالعه موردی: جنگلهای گیلان، ماسال). یافته های نوین در علوم زیستی. 1397; 5 (2) :95-105

URL: http://nbr.khu.ac.ir/article-1-3074-fa.html


دانشگاه گیلان ، hsamizadeh@yahoo.com
چکیده:   (134 مشاهده)
به منظور درک مکانیسم سازگاری اکوفیزیولوژی راش شرقی Fagus orientalis Lipesky نسبت به تغییرات ارتفاعی، میزان فعالیت آنزیم های آنتی اکسیدانی شامل پراکسیداز، کاتالاز و آسکوربات پراکسیداز در برگ های درختان راش شرقی در ارتفاعات مختلف (700 متر، 1200 متر و 170 متر ارتفاع از سطح دریا) در جنگلهای گیلان مورد مطالعه قرار گرفت. نمونه برداری از برگ های واقع در نمیه شمالی و جنوبی تاج درختان سالم و بالغ راش شرقی انجام شد. نتایج تجزیه واریانس نشان داد که اختلاف معنی داری در بین و درون جمعیت برای فعالیت آنزیم های کاتالاز و پراکسیداز در سطح احتمال 05/0 وجود داشت و با افزایش ارتفاع، میزان فعالیت کاتالاز و پراکسیداز افزایش یافت، اما فعالیت آنزیم آسکوربات پراکسیداز ابتدا به صورت افزایشی و از ارتفاع میانه با افزایش ارتفاع میزان فعالیت  آن کاهش یافت. همچنین نتایج نشان داد که فعالیت آنزیمی پراکسیداز و کاتالاز در برگ های جمع آوری شده از نمیه شمالی درختان نسبت به برگ های جمع آوری شده از  نیمه جنوبی درختان بیشتر بود. 
متن کامل [PDF 1006 kb]   (91 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: علوم گیاهی
دریافت: ۱۳۹۶/۱۱/۲ | ویرایش نهایی: ۱۳۹۷/۷/۱۰ | پذیرش: ۱۳۹۷/۲/۴ | انتشار: ۱۳۹۷/۲/۴ | انتشار الکترونیک: ۱۳۹۷/۲/۴

فهرست منابع
1. Allison, S.D. and Schultz, J.C. 2004. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in Northern red oak (Quercus rubra L.). – Chem. Ecol. 30: 1363-1379. [DOI:10.1023/B:JOEC.0000037745.66972.3e]
2. Agarwal, S. and Pandey, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. – Biol. Plant 48: 555-560. [DOI:10.1023/B:BIOP.0000047152.07878.e7]
3. Araujo, W.L., Dias, P.C. and Moraes, G.A. 2008. Limitations to photosynthesis in coffee leaves from different canopy positions. – Plant. Physio. Bio. 46: 884-890. [DOI:10.1016/j.plaphy.2008.05.005]
4. Aslam, R., Bostan, N., Nabgha-e-Amen, M.M. and Safdar, W. 2011. A critical review on halophytes: salt tolerant plants. – Med. Plants. Res. 5: 7108-7118.
5. Babaei, F., Jalali, S.A. and Azadfar, D. 2012. Investigation of genetic variation in Zelkova carpinifolia by use of leaf peroxidase isozyme in three lowland habitats in north of Iran. – Wood. Forest. Sci. Tech. 19: 121-133.
6. Babaei, F., Jalali, S.G., Sohrabi, H. and Shirvany, A. 2016. Physiological responses of seedlings of different Quercus castaneifolia C.A. Mey. Provenances to heterogeneous light environments. – Forest Sci. 62: 485-491.
7. Bayramzadeh, V. 2011. Stomatal characteristics of Fagus orientalis Lipsky. in geographically separated locations in the Caspian Forests of Northern Iran. – Environ. Sci. 5: 836-840.
8. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. – Anal. Biochem. 44: 276-87. [DOI:10.1016/0003-2697(71)90370-8]
9. Canche, B. and Maehly, A.C. 1955. Assay of catalase and peroxidases. – Methods Enzymol. 2: 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
10. Carpenter, S.B. and Smith, N.D. 1981. A comparative studies of leaf thickness among Southern Appalachian hardwoods. – Botany 59: 1393-1396.
11. Cadenas, E. 1989. Biochemistry of Oxygen Toxicity. – Annu. Rev. Biochem. 58: 79-110. [DOI:10.1146/annurev.bi.58.070189.000455]
12. Cesar, A.R., Antunes, M.T. and Vidal, P.G. 2010. Método do estudo de caso em pesquisas da área de contabilidade: uma comparação do seu rigor metodológico em publicações nacionais e internacionais. – Revista de Informação Contábil. 4: 42-64.
13. Espahbodi, K. 2005. Genetic variation and effects of genotype and environment on the establishment and growth mountain ash (Sorbus torminalis). – Ph.D Thesis, Tarbiate Modarres University. pp 74.
14. Foyer, C.H. and Shigeoka, S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. – Plant Physiol. 155: 93-100. [DOI:10.1104/pp.110.166181]
15. Germino, M.J. and Smith, W.K. 2000. High resistance to low temperature photoinhibition in two alpine, snowbank species. – Physiol. Plantarum 110: 89-95. [DOI:10.1034/j.1399-3054.2000.110112.x]
16. Gill, S.S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. – Plant. Physio. Bio. 48: 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
17. Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme in aerobic life. – Plant Physiol. 141: 312-322. [DOI:10.1104/pp.106.077073]
18. Han, Q., Katahata, S., Kakubari, Y. and Mukai, Y. 2004. Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. – Tree Physiol. 24: 609-616. [DOI:10.1093/treephys/24.6.609]
19. Hatziskakis, S., Tsiripidis, I. and Papageogioui, A.C. 2011. Leaf morphological variation in beech (Fagus sylvatica L.) populations in Greece and its relation to their post-glacial origin. – Linnaean Society 165: 422-436. [DOI:10.1111/j.1095-8339.2011.01124.x]
20. Khaksar, R., Aldaghi, M., Salimi, A. and Espahbodi, K. 2015. Investigation on qualitative and quantitative changes of peroxidase isozyme in maple (Acer velutinum) at different altitudes of Mazandaran forests. – Range. Forest. Plant. Breed Gen. Res. 23: 203-214.
21. Karner, C., Farquhar, G.D. and Roksandic, Z. 1988. A global survey of carbon isotope discrimination in plants from high altitude. – Oecologia 74: 623-632. [DOI:10.1007/BF00380063]
22. Keles, Y. and Everest, A. 2008. Relation to altitude adaptation and antioxidant defense system in five shrubs and trees species from middle Taurus Mountains. – Natural. Eng. Sci 2: 45-49.
23. Lykholat, Y., Khromyk, N., Ivanko, I., Kovalenko, I., Shupranova, L. and Kharytonov, V.M. 2016. Metabolic responses of steppe forest trees to Altirude Associated local environmental changes. – Agri. For. 62: 163-171.
24. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F. and Noctor, G. 2010. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic model. – Environ. Experi. Bot. 61: 4197-4220. [DOI:10.1093/jxb/erq282]
25. Matos, F. S., Wolfgramm, R., Goncalves, F.V., Cavatte, P.C., Ventrella, M.C. and DaMatta, F.M. 2009. Phenotypic plasticity in response to light in the coffee tree. – Environ. Exper. Bot. 67: 421-427. [DOI:10.1016/j.envexpbot.2009.06.018]
26. Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. – Plant. Cell. Physiol. 22: 867-880.
27. Öncel, L., Yurdakulol, E., Keleş, Y., Kurt, L. and Yıldız, A. 2004. Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. – Acta Oecologica 26: 211-218. [DOI:10.1016/j.actao.2004.04.004]
28. Parhizkar, P., Korori, S.A., Moraghebi, F., Teimouri, M., Torabian, Y. and Manouchehri, N. 2009. Seasonal alteration of peroxidase in branch and leaves of Eucalyptus viminalis Labill. – For. Pop. Res. 16: 368-377.
29. Polle, A. 1996. Mehler Reaction: Friend or Foe in Photosynthesis? – Bot. Acta. 109: 84-89. [DOI:10.1111/j.1438-8677.1996.tb00546.x]
30. Queval, G., Issakidis-Bourguet, E., Hoeberichts, F.A., Vandorpe, M., Gakiere, B, Vanacker, H., Miginiac-Maslow, M., Van Breusegem, F. and Noctor, G. 2007. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. – Plant J. 52: 640-657. [DOI:10.1111/j.1365-313X.2007.03263.x]
31. Qipeng, H., Guo, ZH. and Li, CY. 2008. Advance at phenotypic plasticity in plant responses to abiotic factors. – Sci. Silvae. Sinicae 44: 136-142.
32. Raeisi, S., Jalali, S.G. and Espahbodi, K. 2011. An investigation of genetic variation of (Quercus castaneafolia C.A.Meyer) in Neka and Noor forest of Mazandaran using peroxidase activities. – Tax. and Bio. 2: 11-22.
33. Rundel, P.W., Gibson, C.A., Sharifi, M.R. and Esler, K.J. 1998. Morphological and physiological components of adaptations to light environments in neotropical Heliconia (Heliconiaceae). – J. Trop. Ecol. 14: 789-801. [DOI:10.1017/S0266467498000571]
34. Sagisaka, S. 1985. Injuries of cold acclimatized polar twigs resulting from enzyme inactivation and substrate during frozen and ambient for a long period. – Plant Cell Physiol. 28: 1135-1145. [DOI:10.1093/oxfordjournals.pcp.a077009]
35. Saho, A.C. and Mishra, D. 1987. Changes in some enzyme activities during excised rice leaf senescence under NaCl-stress. – Bio. Physio. 182: 501-505.
36. Sofo, A., Dichio, B., Xiloyannis, C. and Masia, A. 2005. Antioxidant defenses in olive trees during drought stress: changes in activity of some antioxidant enzymes. – Func. Plant. Bio. 32: 45-53. [DOI:10.1071/FP04003]
37. Streb, P., Shang, W., Feierabend, J. and Bligny, R. 1998. Divergent strategies of photo protection in high-mountain plants. – Planta 207: 313-324. [DOI:10.1007/s004250050488]
38. Zhua, J.T., Lia, X.Y., Zhanga, X.M., Zenga, F.J., Lina, L.S., Yanga, S.G. Guiaand, D.W. and Wang, H. 2010. Ecophysiological adaptation of Calligonum roborov-skii to decreasing soil water content along an altitudinal gradient in the Kunlun Mountains, Central Asia. – Plant Physiol. 57: 826-832.
39. Wildi, B. and Lütz, C. 1996. Antioxidant composition of selected high alpine plant species from different altitudes Plant. – Cell. Environ. 19: 138-146. [DOI:10.1111/j.1365-3040.1996.tb00235.x]
40. Yamasaki, H., Sakihama, Y. and Ikehara, N. 1997. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. – Plant. Physiol. 115: 1405-1412. [DOI:10.1104/pp.115.4.1405]
41. Zolfaghari, R., Hosseini. S.M. and Korori, S.A. 2010. Relationship between peroxidase and catalase with metabolism and environmental factors in Beech (Fagus orientalis Lipsky in three different elevations. – Environ. Sci. 1: 243-252.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به سامانه نشریات علمی یافته های نوین در علوم زیستی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb