Volume 6, Issue 1 (5-2019)                   nbr 2019, 6(1): 50-60 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farahmand S, Fatemi F, Hajihosseini R. Sequencing of the rus gene before and after the mutation with DES in the bacterial Acidithiobacillus sp. FJ2. nbr 2019; 6 (1) :50-60
URL: http://nbr.khu.ac.ir/article-1-3008-en.html
NSTRI ,  ffatemi@aeoi.org.ir
Abstract:   (4926 Views)
In Acidithiobacillus ferrooxidans, the proteins present in the electron transfer pathway cause ferrous iron oxidation which leads to uranium extraction. The relationship between gene sequence and uranium extraction has not been investigated yet. Based on the changes in uranium extraction, the changes of rus gene sequence can reveal the direct and accurate role of this protein. For this purpose, a random mutation was induced in native Acidithiobacillus sp. FJ2 by two doses of 0.8% and 1% of DES. Then, the bacteria was transferred into a medium which contained 50% uranium ore to carry out the bioleaching process. After measuring the amount of the extracted uranium, iron, Eh and pH, genomic DNA was extracted to investigate the rusticyanin gene (rus) sequence sent for sequencing after performing PCR. Then, the wild-type gene sequence was compared with the mutant by Bioedit v7.2.5 software. The results showed that uranium extraction increased by mutant bacteria with DES 1% between 7-11 days in comparison with wild bacteria. However, there has been no change in the functional areas of the rusticyanin gene. It seems that DES affected other effective genes in the electron transport chain or regulatory areas, which required further studies.
 



 
Full-Text [PDF 980 kb]   (1784 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2017/12/8 | Revised: 2019/05/6 | Accepted: 2018/07/15 | Published: 2019/04/30 | ePublished: 2019/04/30

References
1. Albooshoke, N., Tahmoorespour, M. and Nassiry M.R. 2017. Identification and sequencing of Mt-COX1 gene in Khorasan native chicken. - Genetics in the 3rd Millennium 12: 3520-3527.
2. Barrett, M.L., Harvey, I., Sundararajan, M., Surendran, R.R., Hall, J.F., Ellis, M.J., Hough, M.A., Strange, R.W., Hillier, I.H. and Hasnain, S.S. 2006. Atomic resolution crystal structures, EXAFS, and quantum chemical studies of rusticyanin and its two mutants provide insight into its unusual properties. - Biochem. J. 45: 2927-2939. [DOI:10.1021/bi052372w]
3. Borisovich, U.A. and Mihaylovich, K.A. 2013. Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. - J. Radioanal. Nucl. Chem. 295: 151-156. [DOI:10.1007/s10967-012-1816-9]
4. Chen, P., Yan, L., Wang, Q., Li, Y. and Li, H. 2012. Surface alteration of realgar (As4S4) by Acidithiobacillus ferrooxidans. - Int. Microbiol. 15: 9-15.
5. De Ley, J. 1964. Effect of mutation on DNA-composition of some bacteria. - Antonie van Leeuwenhoek 30: 281-288. [DOI:10.1007/BF02046734]
6. Dong, Y., Lin, H., Wang, H. and Mo, X. 2011. Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. - Miner. Eng. 24: 870-875. [DOI:10.1016/j.mineng.2011.03.020]
7. Dutrizac, J.E. and MacDonald, R.J.C. 1974. Ferric iron as a leaching medium. - Miner. Sci. Engng. 6: 59-62.
8. Ehling, U.H. and Neuhiuser-Klaus, A. 1988. Induction of specific-locus and dominant-lethal mutations in male mice by diethyl sulfate (DES). - Mutat Res. 199: 191-198. [DOI:10.1016/0165-1161(88)90247-6]
9. Fatemi, F., Arabieh, M. and Jahani, S. 2016. Application of response surface methodology to optimize uranium biological leaching at high pulp density. - Radiochim. Acta. 104: 239-246. [DOI:10.1515/ract-2015-2495]
10. Fatemi, F., Rashidi, A. and Jahani, S. 2015. Isolation and Identification of native sulfur-oxidizing bacterium capable of uranium extraction. - Prog. Biol. Sci. 5: 207-221.
11. Fetter, C.W. 1998. Applied hydrogology. Pub New York, pp: 4-5.
12. Hall, F.J., Kanbi, D.L., Harvay, I., Murphy, M.M. and Hasnain, S.S. 1998. Modulating the Redox Potential and Acid Stability of Rusticyanin by Site-Directed Mutagenesis of Ser86. - Biochem. 37: 11451-11458. [DOI:10.1021/bi980960m]
13. Hiroyoshi, N., Hirota, M., Hirajima, T. and Tsunekawa, M. 1999. Inhibitory effect of iron-oxidizing bacteria on ferrous-promoted chalcopyrite leaching. - Biotechnol. Bioeng. 64: 478-83. https://doi.org/10.1002/(SICI)1097-0290(19990820)64:4<478::AID-BIT10>3.0.CO;2-0 [DOI:10.1002/(SICI)1097-0290(19990820)64:43.0.CO;2-0]
14. Hoffmann, G.R. 1980. Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds. -Mutat. Res. 75: 63-129. [DOI:10.1016/0165-1110(80)90028-7]
15. Holmes, D. and Bonnefoy, V. 2006. Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. - Biomining pp: 281-307. [DOI:10.1007/978-3-540-34911-2_14]
16. Ilbert, M. and Bonnefoy, V. 2012. Insight into the evolution of the iron oxidation pathways. - Biochim Biophys Acta 1827: 161-75. [DOI:10.1016/j.bbabio.2012.10.001]
17. Jahani, S., Fatemi, F., Firoz-e-zare, M.A. and Zolfaghari, M.R. 2015. Isolation and Characterization of Acidithiobacillus ferrooxidans Strain FJS from Ramsar, Iran. - eJBio. 11: 138-146.
18. Jian, k., Guan-zhou, Q., Jian, G., Hai-hua, W. and Xue-ling, W. 2009. Bioleaching of chalcocite by mixed microorganisms subjected to mutation. - J. Cent. South Univ. T. 16: 0218-0222. [DOI:10.1007/s11771-009-0037-z]
19. Karamanev, D.G., Nikolov, L.N. and Mamatarkova, V. 2002. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. - Miner. Eng. 15: 341-346. [DOI:10.1016/S0892-6875(02)00026-2]
20. Kanbi, L.D., Svetlana, A., Hough, M.A., Hall, J. F., Dodd, F.E. and Hasnain, S.S. 2002. Crystal Structures of the Met148Leu and Ser86Asp Mutants of Rusticyanin from Thiobacillus ferrooxidans: Insights into the Structural Relationship with the Cupredoxins and the Multi Copper Proteins. - J. Mol. Biol. 320: 263-275. [DOI:10.1016/S0022-2836(02)00443-6]
21. Kang, J., Qiu, G.Z. and Gao, J. 2009. Bioleaching of chalcocite by mixed microorganisms subjected to mutation. - J. Cent. South Univ. T. 16: 0218-0222. [DOI:10.1007/s11771-009-0037-z]
22. Meruane, G. and Vargas, T. 2003. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5-7.0. - Hydrometallurgy 71: 149-158. [DOI:10.1016/S0304-386X(03)00151-8]
23. McCready, R.G. and Gould, W.D. 1990. Bioleaching of uranium. In Microbial mineral recovery, (H. L. Erlich and C. L. Brierley, Eds.). - McGraw-Hill, New York. pp: 107-126.
24. Natarajan, K.A. 1998. Electro chemical aspects of bioleaching of base treatal sulfides, microbial mineral Recovery. - Erlich, H. pub, New York, 162 pp.
25. Pulgar, V., Nunez, L. and Moreno, F. 1993. Expression of rusticyanin gene is regulated by growth condition in Thiobacillus ferrooxidans. In: Torma AE, Wey JE, Lakshmanan VI (eds) Biohydrometallurgical technologies. - TMS. 2: 541-548.Rawlings, D.E. 2002. Heavy metal mining using microbes. - Annu. Rev. Microbiol. 56: 65-91. [DOI:10.1146/annurev.micro.56.012302.161052]
26. Robert, C., Black, I.I. and Shute, A.E. 1994. Respiratory Enzymes of Thiobacillus ferrooxidance kinetic properties of an Acid stable Iron: Rusticyanin oxidoreductae. - Biochem. 33: 9220-8. [DOI:10.1021/bi00197a025]
27. Ronen, A. 1964. Back mutation of leucine-requiring auxotrophs of Salmonella typhimurium induced by diethylsulphate. - J. Gen. Microbil. 37: 49-58. [DOI:10.1099/00221287-37-1-49]
28. Ru-an, C.H., Xiao-hui, H., Chun-qiao, X., Yuan-xin, W.U. and Wen-xue, Z. 2009. Bioleaching of soluble phosphorus from rock phosphate containing pyrite with DES-induced Acidithiobacillus ferrooxidans. - J. Cent. Sout Univ T. 16: 0758-0762. [DOI:10.1007/s11771-009-0126-z]
29. Sand, W., Gerke, T., Hallmann, R. and Shippers, A. 1995. Sulfur chemistry, biofilm and the (in) direct attack mechanisms- a crucial evaluation of bacterial leaching. - Appl. Microbiol. Biotechnol. 43: 961-965. [DOI:10.1007/BF00166909]
30. Silverman, M.P. and Lundgren, D.G. 1959. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvestingnprocedure for securing high cell yields. - J. Bacteriol. 77: 642-647.
31. Shahroz, K., Faizul, H., Fariha, H., Kausar, S. and Rahat, U. 2012. Growth and Biochemical Activities of Acidithiobacillus thiooxidans Collected from Black Shale. - J. Microbiol. Res. 2: 78-83. [DOI:10.5923/j.microbiology.20120204.03]
32. Tsukasa, I., Kenichi, S. and Satoshi, O. 2004. Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. - Appl Environ Microbiol. 70: 3122-3129. [DOI:10.1128/AEM.70.5.3122-3129.2004]
33. Valdés, J., Pedroso, I., Quatrini, R., Dodson, R., Tettelin, H., Blake, R., Eisen, J.A. and Holmes, D.S. 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. - BMC Genomics 11: 597-621. [DOI:10.1186/1471-2164-9-597]
34. Vaghar, R. 1999. Microbial technology in metallurgy. - Univ. Ind. Mines. Tehran, 372 pp.
35. Walsh, D. 1997. Recent developments at the Girilambone heap leach-SX-EW operation. Girilambone copper company, pub. In: ALTA Copper Hydrometallurgy Forum, October 20-21. - Queensland, Australia pp: 1-15.
36. Wu, A.X., Hu, K.J., Zhang, A.Q. and Yang, Y. 2017. Effect of ultraviolet mutagenesis on heterotrophic strain mutation and bioleaching of low grade copper ore. - J. Cent. South Univ T. 24: 2245-2252. [DOI:10.1007/s11771-017-3634-2]
37. Xie, X., Yuan, X., Liu, N., Chen, X., Abdelgadir, A. and Liu, J. 2013. Bioleaching of Arsenic-Rich Gold Concentrates by Bacterial Flora before and after Mutation. - Biomed. Res. Int. 2013: 1-10. [DOI:10.1155/2013/969135]
38. Yarzabal, A., Duquesne, K. and Bonnefoy, V. 2003. Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC33020 in sulfur- and in ferrous iron-media. - Hydrometallurgy 71: 107-114. [DOI:10.1016/S0304-386X(03)00146-4]
39. Yarzabal, A., Appia-Ayme, C., Ratouchniak, J. and Bonnefoy V. 2004. Regulation of the expression of the Acidithiobacillus ferroxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. - Microbiology 150: 2113-2123. [DOI:10.1099/mic.0.26966-0]
40. Yingbo, D., Hai, L., Han, W., Xiaolan, M., Kaibin, F. and Hongwei, W. 2011. Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. - Miner. Eng. 24: 870-875. [DOI:10.1016/j.mineng.2011.03.020]
41. Zhang, Y., Qin, W., Wang, J., Zhen, S., Yang, C., Zhang, J., Nai, S. and Qiu, G. 2008. Bioleaching of chalcopyrite by pure and mixed culture. - Trans. Nonferrous Met. Soc. China. 18: 1491-1496. [DOI:10.1016/S1003-6326(09)60031-5]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb