Nutlet micromorphology of the genus Marrubium L. and allies and its systematic implication (Lamiaceae: tribe Marrubieae)

Soudeh Siadati¹, Shahryar Saeidi Mehrvarz¹ & Yasaman Salmaki²

¹Department of Biology, Faculty of Science, University of Guilan, P.O. Box, 41335-1914 Rasht, Iran; ²Center of Excellence in Phylogeny of Living Organisms and Department of Plant Science, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.

Correspondent author: Soudeh Siadati, ssiadati@phd.guilan.ac.ir; Yasaman Salmaki, ysalmai@ut.ac.ir

Abstract. Nutlets of 20 taxa of the tribe Marrubieae were examined by scanning electron microscopy (SEM) and detailed descriptions of nutlet micromorphological features for all examined taxa are provided. The nutlets exhibited variation in size, shape, color and surface sculpturing. The nutlets shape of most species studied is ovate, but rounded, broad ovate, elliptic, lanceolate, triangular and oblong can also be found in a few species. Six basic types of the sculpturing pattern of nutlet surface can be distinguished: reticulate, foveolate, scalariform, ruminate, pusticulate and colliculate-granulate. The most common type of nutlet sculpturing among the studied species is reticulate, but the variation in size and shape of their composing cells provided useful diagnostic characters. Our investigation revealed that the type of sculpturing was more useful in taxon delimitation among Marrubium species and allies at the species rank.

Keywords. diagnostic characters, Labiatae, surface sculpturing, scanning electron microscopy, taxonomy
INTRODUCTION

Marrubieae Vis., with five genera and ca. 91 species, is one of the 10 Lamioideae tribes distributed mainly in southern Europe and North Africa (Siadati et al., 2018). They are mostly nonaromatic herbs or subshrubs with campanulate to rotate calyx and often with secondary calyx lobes, zygomorphic and 2-lipped corolla and stamens included or shortly exerted from the corolla (Siadati et al., 2018; Harley et al., 2004).

According to one of the most recent phylogenetic studies, the monophyletic Marrubieae contains four major clades: the first one including member of Acanthoprasium (Benth.) Spach and Moluccella L., the second one comprising species of Ballota L., the third clade containing Pseudodictamnus Fabr. and related species and the fourth one including Marrubium L. species (Siadati et al., 2018). Acanthoprasium, with two species, is an European genus with a woody habit, spiny bracteoles and upper lip of corolla totally hairy. According to Bendiksby et al. (2011), the annual or short-lived perennials Moluccella, contains eight species in southwestern Asia and the Mediterranean regions, are characterized by a zygomorphic calyx more or less expanded at the mouth, internally glabrous, and usually lobed with both primary and secondary indentations. The genus Ballota are subshrubs to perennial herbs with herbaceous bracteoles and shortly exerted stamens from the corolla and extend from Macaronesia, Europe to Mediterranean and Western Asia (Siadati et al., 2018). According to Bentham (1832-1836), the genus Ballota had traditionally been divided into three sections based on two main morphological characters, woody against herbaceous habit and the type of bracteoles (spinosne against herbaceous): (1) sect. Acanthoprasium Benth., which is raised to generic rank by Bendiksby et al. (2011), (2) sect. Beringeria (Neck.) Benth., which is recently raised to generic rank by Siadati et al. (2018) and (3) sect. Ballota Benth. (Bentham 1832-1836). Based on recent phylogenetic studies, the genus Ballota re-circumscribed to encompass the members of sect. Ballota with about three species. Moreover, members of sect. Beringeria recently raised to generic rank as Pseudodictamnus, which accommodates perennial herbs with herbaceous bracteoles, expanded calyx limb with 6-20 teeth and widely distributed from Eurasia to North Africa (Siadati et al., 2018). The genus Marrubium with about 50 species have usually toothed and petiolate leaves, 5-15 (~30) lobed calyx covered by dense stellate trichomes, corolla tube shorter than calyx and stamens included in the corolla tube (Harley et al., 2004).

Studies on nutlet micromorphology within Lamiaceae showed that nutlets features e.g., shape, morphology of the abscission scar and surface sculpturing, were potentially useful at different taxonomic levels (e.g. Demissew & Harley, 1992; Marin et al., 1994; Ryding, 1995; Oran, 1996; Ryding, 1998; Salmaki et al., 2008; Moon et al., 2009; Satil et al., 2012; Krawczyk & Głowacka, 2015; Eysazadeh Khosroshahi & Salmaki, 2018). Among different nutlet characters, type of sculpturing has been considered to be taxonomically most important (Oran, 1996; Kahraman et al., 2011), however, color, size and shape of nutlets were considered unimportant, either because they did not vary or the variation was random or too great (Oran, 1996). Abscission scars were invariable, but the variation at higher levels may be significant (Guerin, 2005). There are no reports on the taxonomic significance of the nutlets micromorphology among different genera of Marrubieae, except that by Mosquero et al. (2007), who provided a description of the morphology and anatomy structure in Marrubium vulgare L. Akgül et al. (2008) illustrated the range of variability in seed characters in Marrubium species found in Turkey and Hassan & Al-Thobaiti (2015) provided a detailed description of the morphological nutlet characteristics of Marrubium vulgare in Saudi Arabia. Thus, the main goal of this study was to provide a detailed description of nutlet micromorphology of the genus Marrubium and allies.

MATERIALS AND METHODS

Nutlets of 20 species representing all five genera of tribe Marrubieae were selected to investigate the value of seed characters in the classification of genera and species. Nutlets were collected from herbarium specimens, deposited in the herbaria M (Botanische Staatssammlung München), MSB (Münch Systematic Botany), and TUH (Central Herbarium of Tehran University). A list of voucher specimens is presented in Table 1. A total of two species of Acanthoprasium, two species of Moluccella, four taxa representing three species of Ballota, two species of Pseudodictamnus and 10 species of Marrubium were analyzed. Nutlets were observed in advance, using a stereomicroscope to ensure that they were of normal size and maturity. Nutlets observations were made using scanning electron microscopy.

For SEM observations, dried nutlets were mounted on aluminum stubs using double-sided adhesive and sputter-coated with a thin layer (ca. 30 nm) of gold and examined by means of a Hitachi SU3500 (Japan) scanning electron microscopy at an accelerating voltage of 5-30 kV. This paper follows the terminology of Bojnanský & Fargašová (2007) and Stearn (1983) for the seed shape and surface ornamentation.
Table 1. Taxa, voucher specimens and collection data of selected species of Marrubium and its allied genera deposited in the herbaria M (Botanische Staatsammlung München), MSB (Münich Systematic Botany), and TUH (Central Herbarium of Tehran University).

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthoprasium frutescens (L.) Spenn.</td>
<td>France: Schlucht von Aiglum, 30 km westlich und nördlich Nice, O. Angerer s.n. (M)</td>
</tr>
<tr>
<td>Acanthoprasium integrifolium (Benth.) Ryding</td>
<td>Cyprus: – 1880 (M)</td>
</tr>
<tr>
<td>Ballota nigra subsp. anatolica P. H. Davis, Cult.</td>
<td>Turkey: Nigde, near Aydinkent, Yayikli, P. Rasmont 55330 (M)</td>
</tr>
<tr>
<td>Ballota nigra subsp. ruderalis (SW.) Briq.</td>
<td>Jugoslavia: Makedonija, 13 km ONO von Skocivir an der Straße zum Kajmakchalan (Grenzgebirge), D. Podlech & Lippert 26027 (M)</td>
</tr>
<tr>
<td>Ballota platyloma Rech.f.</td>
<td>Iran: Mazandaran, Zentral-Elburs, Im Einzugsgebiet des oberen Tedschen-Flusses, unterhalb Kom-rud bala, lochere Gebuschvegetation, Felschlucht; 60 km ostlich von Firozkuh, E. Behboudi & P. Aellen s.n. (M)</td>
</tr>
<tr>
<td>Ballota saxatilis Sieber ex C.Presl</td>
<td>Libanon/Syrien: –, s.n. (M)</td>
</tr>
<tr>
<td>Pseudodictamnus hispanicus (L.) Salmaki & Siadati</td>
<td>Spain: Valencia Segundo, irruinis, 508 (M)</td>
</tr>
<tr>
<td>Pseudodictamnus aucheri (Boiss.) Salmaki & Siadati</td>
<td>Iran: Chahar-Mahal-e Bakhtiari, Kuh-e Rig from Dehno, Zerre 17941 (TUH)</td>
</tr>
<tr>
<td>Marrubium alyssoides Pomel,</td>
<td>Marokko: d' Oujda, 5 km W El Aioun; Felder, Eucalyptushainen N der Straße nach Taza (P 1), W. Lippert 21821 (M)</td>
</tr>
<tr>
<td>Marrubium anisodon K. Koch</td>
<td>Afghanistan: Logar, Weshang des Tera-Passes bei Neyzi, D. Podlech 18498 (M)</td>
</tr>
<tr>
<td>Marrubium astracanicum Jacq.</td>
<td>Caucasus: Krasnoselskoie, montes Areguni, in vicinitate pagi Tokludza, V. Vašák 257082 (M)</td>
</tr>
<tr>
<td>Marrubium catarifolium Desr.</td>
<td>Caucasica: M. Senser 257078 (M)</td>
</tr>
<tr>
<td>Marrubium cuneatum Banks & Sol.</td>
<td>Iran: Kurdistan, In grammnosis siccis jugi prope Salavatabad 25 km E Sanandaj, K.H. Rechinger 42784 (M)</td>
</tr>
<tr>
<td>Marrubium leonuroides Desr.</td>
<td>Caucasus: Kislovodsk, in abruptis, I. Akinfiev 7382 (MSB)</td>
</tr>
<tr>
<td>Marrubium litardierei Marmey</td>
<td>Marokko: d' Er-Rachidida, Hoher Atlas, Tizi n'Talrent an der Straße von Midelt nach Straßenrand, D. Podlech 47337 (MSB)</td>
</tr>
<tr>
<td>Marrubium peregrinum L.</td>
<td>Austria: Nordburgenland, Parndorfer Platte, trockene, grasige Stellen am E-Fuß des Heidl bei Nickelsdorf, ca. 0.45 km SSE des Bahnbürgangs am NE-Fuß des Heidl (Kote 133), T. Barta 2004-351 (M)</td>
</tr>
<tr>
<td>Marrubium persicum C.A. Mey.</td>
<td>Armenien: Ararat, Ararat valley 12 km NNW of Ararat town, 7 km NW of Vedi, Erh range, Fayvush & al. XI/1040 (M)</td>
</tr>
<tr>
<td>Marrubium propinquum Fisch. & C.A. Mey.</td>
<td>Caucasus: Krasnoselskoie, montes Areguni, in vicinitate pagi Tokludza, V. Vašák s.n. (M)</td>
</tr>
<tr>
<td>Molucella aucheri (Boiss.) Scheen,</td>
<td>Iran: Baluchistan, 20 km a Zahedan meridiem versus, K.H. Rechinger 14562 (M)</td>
</tr>
<tr>
<td>Molucella laevis (L.)</td>
<td>Irae: Erbil (Kurdistan). In agris demssis inter Mirza Punstam et Pania, ca 500 m. 11230 (M)</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Several main features of the investigated nutlets i.e. shape, length, width, as well as sculpturing patterns, projections of outer periclinal walls and anticalinal walls are summarized in Table 2. Selected SEM micrographs of nutlets studied were presented in Figures 1-3. In general, the color of nutlets in all studied species was dark brown to black. The nutlets were oblong (e.g., Marrubium catarifolium Desr., Fig. 2G), triangular (e.g., Molucella laevis L., Fig. 3H), broad ovate (e.g., Ballota nigra subsp. ruderalis (Sw.) Briq., Fig. 1F) to rounded (e.g., P. aucheri (Boiss.) Salmaki & Siadati, Fig. 1L) and elliptic (e.g., A. frutescens (L.) Spenn) to lanceolate (e.g., B. nigra subsp. anatolica P.H. Davis, Fig. 1D) in shape, but the most common type was ovate (e.g., Ballota platyloma Rech. f., Fig. 1H; Marrubium cuneatum Banks & Sol., Fig. 2I and Marrubium persicum C.A.Mey., Fig. 3B). The size of nutlet ranged from 1.34×1.08 mm (in Marrubium leonuroides Desr.) to 4.04×1.45 mm (in Mo. aucheri (Boiss.) Scheen). Nutlets of investigated taxa exhibited six types of surface sculpturing patterns. The most common type...
of sculpturing pattern was reticulate (e.g., *A. frutescens*, Fig. 1A), however, other types of sculpturing patterns, like scarialform (*A. integrifolium* (Benth.) Ryding, Fig. 1C), foveolate (*M. persicum*, Fig. 3C), ruminate (*M. alyssoides* Pomel, Fig. 2B), pusticulate (*M. astracanicum* Jacq., Fig. 2F) and colliculate-granulate (*Mo. laevis*, Fig. 3I), were observed.

Our study represents the first investigation on nutlet micromorphology on the genus *Marrubium* and its allied genera. Variation in shape, size, presence or absence of trichomes at the apex of nutlets and particularly surface sculpturing appeared to have taxonomic value in some groups of Lamiaceae (Husain et al., 1990; Oran, 1996; Navarro & El-Qualidi, 2000; Moon & Hong, 2006; Moon et al., 2009; Kahraman et al., 2011). Özkan et al. (2009) found that variation of shape, size, surface sculpturing and color were useful in distinguishing groups, species and subspecies among 12 examined species of *Salvia*. In *Stachys* (Salmaki et al., 2008) nutlet micromorphology provided valuable data in separating the related species within sections, although these characters were not useful in

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Nutlet Shape</th>
<th>Nutlet length (mm)</th>
<th>Nutlet width (mm)</th>
<th>Surface Sculpturing</th>
<th>Apex Bearded</th>
<th>Outer Periclinal Wall</th>
<th>Anticlinal Wall</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthoprasium frutescens</td>
<td>Elliptic</td>
<td>2.75</td>
<td>1.38</td>
<td>Reticulate +</td>
<td>Deep Concave</td>
<td>Rised</td>
<td>N, O</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Acanthoprasium integrifolium</td>
<td>Triangular</td>
<td>2.75</td>
<td>1.39</td>
<td>Scalariform +</td>
<td>Shallow Concave</td>
<td>Rised</td>
<td>A</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Ballota nigra subsp. anatolica</td>
<td>Broad ovate</td>
<td>2.09</td>
<td>0.9</td>
<td>Foveolate –</td>
<td>Concave</td>
<td>Rised</td>
<td>C, D</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Ballota nigra subsp. ruderalis</td>
<td>Ovate</td>
<td>1.85</td>
<td>1.16</td>
<td>Reticulate –</td>
<td>Flat –</td>
<td>–</td>
<td>F, G</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Ballota platyloma</td>
<td>Ovate</td>
<td>1.85</td>
<td>1.05</td>
<td>Reticulate –</td>
<td>Flat</td>
<td>Rised</td>
<td>D, E</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Ballota saxatilis</td>
<td>Ovate</td>
<td>2.3</td>
<td>1.29</td>
<td>Reticulate –</td>
<td>Convex</td>
<td>Rised</td>
<td>E, F, H</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Pseudodictamnus aucheri</td>
<td>Rounded</td>
<td>1.78</td>
<td>1.32</td>
<td>Reticulate –</td>
<td>Concave</td>
<td>Rised</td>
<td>I, K</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Pseudodictamnus hispanicus</td>
<td>Ovate</td>
<td>2.22</td>
<td>1.27</td>
<td>Reticulate –</td>
<td>Concave</td>
<td>Rised</td>
<td>J</td>
<td>Fig. 1</td>
</tr>
<tr>
<td>Marrubium alyssoides</td>
<td>Ovate</td>
<td>1.86</td>
<td>1.01</td>
<td>Ruminante –</td>
<td>Concave</td>
<td>Rised</td>
<td>A, B</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>Marrubium anisodon</td>
<td>Oblong</td>
<td>1.78</td>
<td>0.99</td>
<td>Reticulate –</td>
<td>Shallow Concave</td>
<td>Rised</td>
<td>C</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>Marrubium astracanicum</td>
<td>Ovate</td>
<td>1.79</td>
<td>1.07</td>
<td>Pusticulate –</td>
<td>Convex</td>
<td>–</td>
<td>E</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>Marrubium catariifolium</td>
<td>Oblong</td>
<td>2.28</td>
<td>1.22</td>
<td>Reticulate –</td>
<td>Deep Concave</td>
<td>Rised</td>
<td>F</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>Marrubium cuneatum</td>
<td>Ovate</td>
<td>2.21</td>
<td>1.21</td>
<td>Reticulate –</td>
<td>Flat</td>
<td>Rised</td>
<td>G</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>Marrubium leonuroides</td>
<td>Ovate-lanceolate</td>
<td>1.34</td>
<td>1.08</td>
<td>Reticulate –</td>
<td>Concave</td>
<td>Rised</td>
<td>K</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>Marrubium litardierei</td>
<td>Ovate</td>
<td>2.09</td>
<td>1.1</td>
<td>Reticulate –</td>
<td>Shallow Concave</td>
<td>Rised</td>
<td>L</td>
<td>Fig. 2</td>
</tr>
<tr>
<td>Marrubium peregrinum</td>
<td>Oblong</td>
<td>1.65</td>
<td>0.96</td>
<td>Reticulate +</td>
<td>Concave</td>
<td>–</td>
<td>M</td>
<td>Fig. 3</td>
</tr>
<tr>
<td>Marrubium persicum</td>
<td>Ovate</td>
<td>1.79</td>
<td>1</td>
<td>Foveolate –</td>
<td>Concave</td>
<td>Rised</td>
<td>O</td>
<td>Fig. 3</td>
</tr>
<tr>
<td>Marrubium propinquum</td>
<td>Oblong</td>
<td>1.81</td>
<td>1.03</td>
<td>Reticulate –</td>
<td>Concave</td>
<td>Rised and Wavy</td>
<td>P</td>
<td>Fig. 3</td>
</tr>
<tr>
<td>Moluccella aucheri</td>
<td>Triangular</td>
<td>4.04</td>
<td>1.45</td>
<td>Reticulate –</td>
<td>Concave</td>
<td>Rised</td>
<td>Q</td>
<td>Fig. 3</td>
</tr>
<tr>
<td>Moluccella laevis</td>
<td>Triangular</td>
<td>3.04</td>
<td>2.13</td>
<td>Colliculate-Granulate</td>
<td>Convex</td>
<td>Rised</td>
<td>R, S</td>
<td>Fig. 3</td>
</tr>
</tbody>
</table>

1Due to lack of sufficient evidence, *Ballota saxatilis* has not yet been assigned to *Pseudodictamnus*, but it shares several morphological features with the members of this genus.

Table 2. Details of nutlet characteristics of the studied taxa of *Marrubium* and its allied genera.
افشای‌های نوین در علوم زیستی، جلد 6، شماره 3: 346-338 (1398)

سپاری‌کننده بزرگ گروه‌های طبیعی. تغییرات در اندازه و نوع شعله‌برداری علاوه بر شکل و اندازه‌های گوناگون در هر سلول تشکیل‌دهنده را به‌عنوان کاراکتر بی‌نظیر در سطح گونه‌ی معرفی کردند (مانند کرامانان استانداردهای 2011; تاریمچیار و همکاران 2013; سالمقی و همکاران 2008; ویژازده کهورشامی و سالمقی، 2018).

برای مثال، سلول‌های پلیگونال در *M. peregrinum* L. (تصویر 3A) بسیار کوچک‌تری نسبت به *M. leonuroide* (تصویر 2L) بودند. همچنین، *M. anisodon* K.Koch (تصویر 2D) و *M. litardierei* (تصویر 2N) در عمق چهارمی پایینی سطح مختلفی بودند. زیرا به‌خاطر فایده خاصی که به‌شناختن شعله‌برداری می‌تواند از کار داشته باشد، یک م),
systematic importance in the genus *Marrubium* and its allied genera.

Fig. 2. Scanning electron micrographs of *Marrubium* and its allied genera. A, B. *Marrubium alyssoides*; C, D: *M. anisodon*; E, F. *M. astracanicum*; G, H. *M. catariifolium*; I, J: *M. cuneatum*; K, L. *M. leonuroides*; M, N. *M. litardierei*, O. *M. peregrinum*.
Fig. 3. Scanning electron micrographs of Marrubium and its allied genera. A. Marrubium peregrinum; B, C. M. persicum; D, E. M. propinquum; F. G. Moluccella aucheri; H, I. Mo. laevis.

Acanthoprasium– This genus includes two species based on the latest phylogenetic study (Bendiksby et al., 2011), characterized by simple hairs and broadly campanulate calyx with spiny lobes. Both species of *Acanthoprasium* are well distinguished by having bearded nutlets. The present study showed that the presence of trichomes at the apex of nutlets could be used as a taxonomic marker in the delimitation of *Acanthoprasium* nutlets from the rest of Marrubiaceae. However, these two species were different in shape and sculpturing pattern. While, *A. frutescens* is characterized by elliptic nutlets as well as reticulate pattern of nutlet sculpturing (Fig. 1A), *A. integrifolium* is distinguished by triangular nutlets and scalariform sculpturing (Fig. 1B–C).

Moluccella– The genus *Moluccella*, characterized by glabrescent stems and leaves as well as an expanded calyx, is distributed from southern Europe to central Asia, Pakistan and Kashmir (Scheen et al., 2010; Bendiksby et al., 2011). In the present study, two out of eight species of this genus were examined. Although both of these species were similar in shape and possession of the largest nutlets (Fig. 3F–H), they were different in the pattern of nutlet sculpturing. *Moluccella aucheri*, distinguished by reticulate pattern of nutlet sculpturing, differs from *Mo. laevis* with colliculate-granulate pattern of nutlet sculpturing. In addition, the type of anticlinal walls was different between these two species. While *Mo. aucheri* possesses raised anticlinal walls, *Mo. laevis* is characterized by anticlinal walls represented by channels. Due to the limited taxon sampling on the genus *Moluccella*, a more comprehensive study needs to be done for indicating the taxonomic importance of nutlet characters.

Ballota– Recently, a narrower circumscription of the genus *Ballota* was proposed by Siadati et al. (2018) to encompass the members of sect. *Ballota* (sensu Patzak, 1958) with about three species. These three species are characterized by the following morphological features: five main calyx teeth, rarely with a few additional minute teeth as well as simple and glandular indumentum (Siadati et al., 2018). Although nutlet morphology was not useful in the recognition of the genus *Ballota* from the other
genera of the tribe Marrubieae, it was helpful in the
delimitation of taxa at species level. Ballota nigra
subsp. anatolica with lanceolate nutlets was
characterized by foveolate pattern of nutlet
sculpturing (Fig. 1D–E). On the other hand, B. nigra
subsp. ruderalis (Fig. 1F–G) and B. platyloma (Fig.
1H–I) have broadly ovate and ovate nutlets,
respectively, and possess reticulate pattern of nutlet
sculpturing.

Pseudodictamus± The genus Pseudodictamus,
with about 28 species, comprises perennial herbs
with herbaceous bracteoles, expanded calyx limb
with 6-20 teeth and corolla tube shorter than or
equaling the calyx with branched and simple hairs
(Siadati et al., 2018). This genus, which is
phylogenetically known to be the closest relative of
Ballota and Marrubium, shares similar nutlet
features with them. For instance, the pattern of
nutlet sculpturing among all three species of the
genus Pseudodictamus was reticulate, which is a
common type among the species of Ballota and
Marrubium. Moreover, these three species were
similar in the following characters: reticulate pattern
of nutlet sculpturing with concave projection in
outer periclinal wall and raised anticlinal walls.
However, they were different in the shape of nutlets
(Fig. 1 J, L, N).

Marrubium± Marrubium, with ca. 50 species, is
morphologically well characterized by the following
features: usually toothed and petiolate leaves,
thyrsoid inflorescence; calyx 5-15(-30)-lobed,
corolla tube shorter than calyx; stamens included in
corolla-tube, posterior corolla lip 2-lobed (Harley et
al., 2004). In addition, several characters, such as
rounded or subtruncate nutlets at apex and glabrous
or with sessile glands at apex, have been mentioned
in previous studies (Harley et al., 2004).

It is not surprising that Marrubium, the largest
genus of the tribe Marrubieae, shows considerable
diversity in nutlet characters such as size, shape, and
sculpturing pattern. Marrubium leonuroides and M.
catarifolium possessed the smallest and biggest
nutlets among the examined species, respectively.
The common nutlet shapes among the Marrubium
species were ovate and oblong. The common
sculpturing pattern of nutlet in Marrubium species
was reticulate, however, they showed some
variation in shape and size of the composing cells.

Based on morphological characters the genus
Marrubium has been divided into six sections by
Seybold (1978). Marrubium sect. Microdonta,
which was represented here by M. astracanicum, M.
catarifolium, M. leonuroides and M. propinquum,
morphologically characterized by five straight or
curved calyx teeth and purple corolla. Although all
the species attributed to this section were different
in shape, they showed similar type of sculpturing,
except in M. astracanicum, which possessed
pusticulate sculpturing. While Marrubium
alyssoides and M. persicum, belonging to
Marrubium sect. Stellata, were similar in shape of
nutlets but differed in the type of sculpturing, both
studied species of Marrubium sect. Marrubium (M.
anisodon and M. cuneatum) differed in the shape of
nutlets but possessed a similar reticulate type of
sculpturing. Marrubium peregrinum, belonging to
sect. Ramosa, possessed the smallest oblong nutlets
(1.65x0.96 mm) among the studied species and
simple hairs at apex.

This section is morphologically well characterized
by widely branched stems and few-flowered
verticillasters with white corolla (Davis, 1982).
Nutlet sculpturing feature was helpful in the
separation of species, however, it appeared
uninformative at the level of section.

CONCLUSION

Nutlet micromorphology provided valuable data in
the separation of the related species within genera
of the tribe. Our findings revealed that the nutlet shape,
sculpturing pattern and the absence/presence of
simple hairs at apex of nutlet were the most
significant features in the separation of taxa at
species level. However, these characters were not
useful in the separation of sections within genera.
Our results, in accordance with previous studies of
Lamiaceae (e.g., Oran, 1996), showed that the shape
of the nutlets were insignificant in assessing the
relationships among Marrubium species and its
relatives in the tribe Marrubieae. It seemed also that,
contrary to other genera of Lamiaceae (e.g., Guerin,
2005), nutlet characters were of low phylogenetic
value in Marrubieae.

ACKNOWLEDGEMENT

We are grateful to “Alexander von Humboldt
Stiftung” for partial financial support, and the
Research Council of the University of Tehran for a
grant to Yasaman Salmaki. This research project
was also supported by the University of Guilan. The
authors would like to thank Mr. Javadi (Shahid
Beheshti University) for his assistance in
providing the scanning electron micrographs.

REFERENCES

Akgül, G., Ketenoğlu, O., Pinar, N. M. and Kurt, L.
2008. Pollen and seed morphology of the genus
Fennici 45: 1-10.

Bendiksby, M. Thorbek, L., Scheen, A.-C., Lindqvist, C.
and Ryding, O. 2011. An updated phylogeny and

How to cite this article: