Morphological, anatomical and palynological studies of the genus *Zoegea* L. (Asteraceae) in Iran

Khadije Mahmoodi1, Maneezeh Pakravan1* & Valiollah Mozaffarian2

Received: 17.05.2017 / Revised: 27.05.2017 / Accepted: 31.05.2017 / Published: 21.12.2018

1Faculty of Biological Science, Alzahra University, Sheikh-Bahae Sq., Tehran, Iran
2Department of Botany, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), P. O. Box 13185-116, Tehran, Iran

*Correspondent author: pakravan@alzahra.ac.ir

Abstract. The genus *Zoegea* L. belongs to Asteraceae family and has about 10 species in the world. This genus is considered to be an Irano-Turanian and Mediterranean element and is distributed in south-western and central Asia and in the central, southern, north-western and south-western parts of Iran as well. The subspecies classification of the genus is not consensus and various classifications could be found in different taxonomy resources. In this study various specimens from different regions of Iran were studied. In addition, anatomical and palynological characters were used to perform a cluster analysis in order to determine species groups. In the end, our results confirmed that *Z. baldschuanica* and *Z. glabricaulis* were distinct species.

Keywords. anatomy, compositae, middle east, morphology, palynology, SEM

INTRODUCTION

The genus *Zoegea* L., also known as Khorchid-e Sobhi in Persian, belongs to the Asteraceae family and is classified in Cardueae tribe and Centaureinae subtribe. In the Centaureinae subtribe, the high variation of morphological characters makes the taxonomy of the genus highly problematic. *Zoegea* has unusual combination of plesiomorphic morphological characteristics and apomorphic pollen types (Wagenitz & Hellwig, 1996). Involutural bracts characters and basic chromosome number (x=14 and x=15) are plesiomorph. Therefore, it was regarded as an isolated genus in Centaureinae.
Later palynological studies showed that *Zoegea* has serratula type pollen (Martin & Gacia-Garcia-Jaceea 2000). Therefore, both morphological and palynological characteristics had confirmed that *Zoegea* has a basic status in phylogenetic tree. Based on different phylogenetic studies (Gacia-Jaceea et al., 2002; Gacia-Jaceea et al., 2001) *Zoegea* is considered to be a monophyletic genus, but there isn’t a consensus idea on the situation of *Zoegea* in the subtribe Centaureinae (Funk et al., 2005).

Three species of *Zoegea* grow in Iran, Turkey, and Egypt and generally in the central and western zones of Asia (Funk et al., 2005; Kubitzki, 2007; Mabberley, 2008). There are 7 taxa in the area of Flora Iranica: *Z. purpurea* Fres., *Z. crinita* subsp. *crinita* Boiss., *Z. crinita* subsp. *balsdchuanica* (C.Winkl.) Rech.f., *Z. crinita* subsp. *glabricaulis* (Czerep.) Rech.f., *Z. leptaeura* L. subsp. *leptaurea*, *Z. leptaeura* subsp. *mesopotamica* (Czerep.) Rech.f., *Z. leptaeura* subsp. *mianensis* (Boiss.) Rech.f. All of these taxa, except *Z. leptaeura* subsp. *leptaurea*, were also reported from Iran, although its presence in the whole area of Flora Iranica is doubtful (Wagenitz, 1980). In this treatment four species were reduced to subspecies rank.

Except some palynological studies (Wagenitz, 1955; Wagenitz & Hellwig, 1996; Garcia-Jacas et al., 2002) there are no significant anatomical and morphological studies in the genus *Zoegea*. In this study, various anatomical and morphological features of Iranian members of the genus *Zoegea* were investigated for the first time.

MATERIALS AND METHODS

Taxonomy and morphology

In addition to our own collections (ALUH) from different provinces of Iran (i.e., Fars, East Azarbayejan, Lorestan, Khuzestan and Bushehr), specimens of TARI, TUH, KAR and RNAK herbaria were studied. The specimens that have been used in palynological and anatomical studies are listed in Table 1. In this study, 21 qualitative and 17 quantitative characters of more than 115 plant samples were measured and used for the morphological studies (Table 2). SPSS software (ver. 18) and Ward’s and Canonical Variate Analysis (CVA) methods were used for statistical analysis.

<table>
<thead>
<tr>
<th>Species</th>
<th>Examined specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. leptaeura subsp. mianensis</td>
<td>Khuzestan province: Sardasht to Bebbahan, 20 km to bebbahan, 700 m a.s.l., F. Attar 11004 (ALUH); Kordestan province: 101 km from Marivan on road to Paveh between Nowsum and Paveh, 1000 m a.s.l., 5 May 1978, H. Runemark & V. Mozaffarian 27435 (TARI); Lorestan province: Khoramabad, 33°42′51″N, 48°26′30″E, 1676 m a.s.l., 31 March 2013, Kh. Mahmoodi 11002 (ALUH).</td>
</tr>
<tr>
<td>Z. purpurea</td>
<td>Hormozgan province: 15 km from diviation of Minab, Rudan road to Rudan, 500 m a.s.l., 5 June 1982, V. Mozaffarian, Banihashemi & Shahinzedeh 39470 (TARI); Hormozgan province: West slope of Kuh-e Genu, N. of Tazian, 500-900 m a.s.l., 24 April 1985, V. Mozaffarian 49549 (TARI); Esfahan province: Ghameshioo protected area; Kooho Arre Khar, 2200 m a.s.l., 6 June 1996, M. Uosofi 74249 (TARI); Lorestan province: Chehr, 14 km to Arak, 1400 m a.s.l., 6 June 1986, M. Assadi & Bazgosha 56545 (TARI).</td>
</tr>
</tbody>
</table>
Table 2. Characters used in morphological study

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Qualitative characteristics</th>
<th>Symbol</th>
<th>Quantitative characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>Indumentums Type</td>
<td>LH</td>
<td>Herb Length</td>
</tr>
<tr>
<td>EP</td>
<td>Embrianchment place</td>
<td>PedL</td>
<td>Peduncle Length</td>
</tr>
<tr>
<td>LIT</td>
<td>Leaf Indumentums Type</td>
<td>EPhR</td>
<td>External Phyllary Row</td>
</tr>
<tr>
<td>PBL</td>
<td>Petiole in Basal Leaf</td>
<td>AL</td>
<td>Awns Length</td>
</tr>
<tr>
<td>PCL</td>
<td>Petiole in Cauiline Leaf</td>
<td>PhAL</td>
<td>Phyllary Appendix Length</td>
</tr>
<tr>
<td>BLT</td>
<td>Basal Leaf Type</td>
<td>NPhAC</td>
<td>Number of Phyllary Appendix Cilium</td>
</tr>
<tr>
<td>CLT</td>
<td>Cauiline leaf Type</td>
<td>IL</td>
<td>Inflorescence Length</td>
</tr>
<tr>
<td>CLA</td>
<td>Cauiline leaf Apex</td>
<td>RL</td>
<td>Radiate floret Length</td>
</tr>
<tr>
<td>PH</td>
<td>Pedicle of Head</td>
<td>AcL</td>
<td>Achene Length</td>
</tr>
<tr>
<td>IPh</td>
<td>Indumentums in Pedicle of Head</td>
<td>PL</td>
<td>Pappus Length</td>
</tr>
<tr>
<td>ESh</td>
<td>Envelope Shape</td>
<td>PR</td>
<td>Pappus Row</td>
</tr>
<tr>
<td>IPhA</td>
<td>Internal Phyillary Apex</td>
<td>IPhL</td>
<td>Internal Phyillary Length</td>
</tr>
<tr>
<td>IPhT</td>
<td>Internal Phyillary Type</td>
<td>EPhL</td>
<td>External Phyillary Length</td>
</tr>
<tr>
<td>TA</td>
<td>Tooth in base of Awns</td>
<td>MLL</td>
<td>Medial Leaf Length</td>
</tr>
<tr>
<td>LBL</td>
<td>Lacinia in Base of Limbus</td>
<td>MLW</td>
<td>Medial Leaf Width</td>
</tr>
<tr>
<td>IF</td>
<td>Indumentums in Filament</td>
<td>EPhR</td>
<td>External Phyillary Row</td>
</tr>
<tr>
<td>BF</td>
<td>Bulge in base of Filament</td>
<td>IPhR</td>
<td>Internal Phyillary Row</td>
</tr>
<tr>
<td>FC</td>
<td>Flower Color</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AC</td>
<td>Achene Color</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AI</td>
<td>Achene Indumentums</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IPC</td>
<td>Internal Pappus Color</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Anatomy

This study was conducted on 25 populations of 5 taxa of Zoega including Z. purpurea, Z. crinita subsp. crinita, Z. crinita subsp. baldschuanica, Z. crinita subsp. glabricaulis, and Z. Leptaurea subsp. Mianensis (Table 1). No specimen of Leptaurea subsp. mesopotamica was available. Leaf and stem anatomy, leaf epidermis, achene and pollen morphology were examined in anatomical study. Leaves were fixed in 70% ethanol and stems in alcohol/glycerine (1:1). Cross sections of the middle part of blade and the third internode of the stem were used and double stained by methyl green and Carmine. Appropriate samples were photographed by means of an Olympus BX51 light microscope. The epidermis was prepared using the mixture of H2O2 and 5% sodium hydroxyl. The following equation was used to calculate the stomatal index: SI= S/E+ S (SI: Stomatal index; S: guard cells; E: epidermal cells).

Palynology

In order to study the pollen grains, flowers were kept in a mixture of absolute acetic acid and ethyl alcohol (96%) 1:1 for 24 hours. The pollen was stained with Carmin and observed by means of an Olympus BX51 light microscope. In order to perform scanning electron microscopy, pollens were coated with a thin layer of gold and observed by means of a SEMTESCAN model VEGA3 Company. About 10-20 pollens were used in measuring polar axis, colpus length, equatorial axis, pore diameter, exin thickness, number and length of spines. Terminology follows Erdtman (1943). Herbarium codes used follows Thiers (2014).

RESULTS AND DISCUSSION

Morphology

In the dendrogram drawn by Ward's method (Fig. 1), based on leaf character at 25 level, two clusters were separated including Z. crinita subsp. baldschuanica and Z. crinita subsp. glabricaulis in one cluster and the rest taxa in the other. Another notable point is that the Z. crinita subsp. crinita has more affinity with other species of this genus in comparison with the two other subspecies of Z. crinita. Results of CVA analysis based on quantitative and qualitative traits have been shown in Fig. 2 and Fig. 3, respectively. This analysis also determined most important quantitative characters (Table 3). Among them, radiate floret length, inflorescence length, pappus row and number of phyllary appendix cillum showed the highest correlation in the first function. Medial leaf width and pappus length showed largest absolute correlation with the second discriminant function. In the third function external phyillary row, medial leaf length and herb length showed the largest absolute correlation.
Fig. 1. The dendrogram of cluster analysis by Ward method on the quantitative morphological characters.

Fig. 2. CVA analysis based on main quantitative morphological characters.
In the fourth function external phyllary length, internal phyllary length and phyllary appendix length also showed the largest absolute correlation. Also, CVA analysis determined the most important qualitative characteristics (Fig. 3). The first function did not show any correlated characters. In the second function character of leaf indumentums type showed correlation between species. Indumentums type, flower color, internal pappus color, achene indumentums, indumentums in pedicle of head, internal phyllary type, internal phyllary apex and achene color showed the largest absolute correlation in the third function. In addition, in the fourth function embranchment place, petiole in basal leaf, envelope shape and cauline leaf apex showed absolute correlation (Table 4).

Table 3. The list of quantitative morphologic characters ranked by CVA analysis.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Radiate floret length</td>
<td>.725*</td>
</tr>
<tr>
<td>Inflorescence length</td>
<td>.574*</td>
</tr>
<tr>
<td>Pappus row</td>
<td>.520*</td>
</tr>
<tr>
<td>Number of phyllary appendix cilium</td>
<td>-.035</td>
</tr>
<tr>
<td>Achene length</td>
<td>-.024*</td>
</tr>
<tr>
<td>Pappus length</td>
<td>.216</td>
</tr>
<tr>
<td>Medial leaf width</td>
<td>.078</td>
</tr>
<tr>
<td>External phyllary row</td>
<td>.216</td>
</tr>
<tr>
<td>Medial leaf length</td>
<td>-.099</td>
</tr>
<tr>
<td>Herb length</td>
<td>-.074</td>
</tr>
<tr>
<td>External phyllary length</td>
<td>-.087</td>
</tr>
<tr>
<td>Internal phyllary length</td>
<td>.354</td>
</tr>
<tr>
<td>Internal phyllary row</td>
<td>.354</td>
</tr>
<tr>
<td>Phyllary appendix length</td>
<td>.354</td>
</tr>
</tbody>
</table>

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions Variables ordered by absolute size of correlation within function.

* Largest absolute correlation between each variable and any discriminant function
 a. This variable not used in the analysis.
Table 4. The list of qualitative morphologic characters ranked by CVA analysis.

<table>
<thead>
<tr>
<th>Structure Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characters</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leaf indumentums type</td>
</tr>
<tr>
<td>Indumentums type</td>
</tr>
<tr>
<td>Flower color</td>
</tr>
<tr>
<td>Internal pappus color</td>
</tr>
<tr>
<td>Achenes indumentums</td>
</tr>
<tr>
<td>Indumentums in pedicel of head</td>
</tr>
<tr>
<td>Internal phyllary type</td>
</tr>
<tr>
<td>Internal phyllary apex</td>
</tr>
<tr>
<td>Achenes color</td>
</tr>
<tr>
<td>Basal leaf type</td>
</tr>
<tr>
<td>Embranchment place</td>
</tr>
<tr>
<td>Petiole in basal leaf</td>
</tr>
<tr>
<td>Envelope shape</td>
</tr>
<tr>
<td>Cauline leaf apex</td>
</tr>
</tbody>
</table>

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions
Variables ordered by absolute size of correlation within function.
* Largest absolute correlation between each variable and any discriminant function

Anatomy

Anatomical results of the leaf showed that qualitative characters including cuticle, secretory, transport tissue, number of layers of ladder parenchyma, type of ladder parenchyma, sclerenchyma, collenchymas, central vascular bundle sheath, fiber and trichome were similar in all Zoegea species. Also, stem characters could not show the separation between taxa. Clustering resulting from anatomy was not the same as morphological analysis and showed the close relationship between the Z. crinita subsp. crinita and Z. leptaurea subsp. mianensis in comparison with the two other subspecies of Z. crinita (Fig. 7). Stoma type in all taxa was Anomocytic, however, at the ventral surface of Z. crinita subsp. baldschuanica and Z. crinita subsp. glabricaulis the anisocytic type and paracytic type were also observed, respectively (Figs. 4, 5 & 6 and Tables 5 & 6).

Table 5. Results obtained from qualitative and quantitative measurements of leaf (μm).

<table>
<thead>
<tr>
<th>Species</th>
<th>Cuticle</th>
<th>Secretory</th>
<th>Transpor t Tissue</th>
<th>number of layers of ladder parenchyma</th>
<th>Type of ladder parenchyma</th>
<th>Sclerenchyma</th>
<th>Collenchyma</th>
<th>Central vascular bundle sheath</th>
<th>Fiber</th>
<th>Trichome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. crinita subsp. crinita</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2-3</td>
<td>Bilateral</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Z. crinita subsp. baldschuanica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>Bilateral</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Z. crinita subsp. glabricaulis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>Bilateral</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Z. Leptaurea L. subsp. mianensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2-3</td>
<td>Bilateral</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Z. purpurea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>Bilateral</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Fig. 4. Cross section of leaf in species studied: A, B: Zoegealeptaurea subsp. Mianensis; C, D: Z. crinita subsp. crinita; E, F: Z. crinita subsp. Baldschuanica; G, H: Z. crinita subsp. glabricaulis (I, J, K) Z. purpurea. (E) Epidermis, (Ph) phloem, (Xy) Xylem, (Parenchyma ladder), (Se) Secretory, (VBSh) Vascular Bundle Sheath, (TT) Transport Tissue, (Sc) Sclerenchyma, (Co) Collenchyma, (F) Fiber.

Fig. 5. Upper epidermis of leaf in species studied: A: Zoegeacrinita subsp. baldschuanica; B: Z. crinita subsp. crinita; C: Z. crinita subsp. glabricaulis; D: Z. Leptaurea subsp. mianensis; E: Z. purpurea.
Fig. 6. Lower epidermis of leaf in some studied species: A: *Zoegeacrinita* subsp. *baldschuanica*; B: *Z.crinita* subsp. *glabricaulis*; C: *Z.leptaurea* subsp. *mianensis*.

Table 6. Results of the study on features of leaf epidermis, stoma and trichome.

<table>
<thead>
<tr>
<th>Species</th>
<th>Type of Epidermis</th>
<th>Type of epidermal cell walls</th>
<th>Type of stoma</th>
<th>Type of trichome</th>
<th>Stomatal Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z.crinita subsp. crinita</td>
<td>Dorsal</td>
<td>Polygonal</td>
<td>Anomocytic</td>
<td>Simple</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Ventral</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Z.crinita subsp. baldschuanica</td>
<td>Dorsal</td>
<td>Polygonal</td>
<td>Anomocytic</td>
<td>Simple</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Ventral</td>
<td>Polygonal - Flexuose</td>
<td>Anomocytic+Anisocytic</td>
<td>Simple</td>
<td>10</td>
</tr>
<tr>
<td>Z.crinita subsp. glabricaulis</td>
<td>Dorsal</td>
<td>Polygonal</td>
<td>Anomocytic</td>
<td>Simple</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Ventral</td>
<td>Polygonal</td>
<td>Anomocytic+Paracytic</td>
<td>Simple</td>
<td>11</td>
</tr>
<tr>
<td>Z.leptaurea subsp. mianensis</td>
<td>Dorsal</td>
<td>Polygonal</td>
<td>Anomocytic</td>
<td>Simple</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Ventral</td>
<td>Polygonal - Flexuose</td>
<td>Anomocytic</td>
<td>Simple</td>
<td>8</td>
</tr>
<tr>
<td>Z.purpurea</td>
<td>Dorsal</td>
<td>Polygonal</td>
<td>Anomocytic</td>
<td>Simple</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Ventral</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 7. The results of the cross section of cypsela measured by Digimizer software (Measurements are in (μm)).

<table>
<thead>
<tr>
<th>Species</th>
<th>Cuticle</th>
<th>Secretory channel</th>
<th>Length of Epicarp</th>
<th>Length of Mesocarp</th>
<th>Length of Testa</th>
<th>Length of middle Testa</th>
<th>Length of inner Endosperm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. crinita subsp. crinita</td>
<td>+</td>
<td>+</td>
<td>12.58</td>
<td>81.49</td>
<td>45.79</td>
<td>67.34</td>
<td>15.89</td>
</tr>
<tr>
<td>Z.crinita subsp. baldschuanica</td>
<td>+</td>
<td>-</td>
<td>11.06</td>
<td>0</td>
<td>76.83</td>
<td>116.20</td>
<td>13.69</td>
</tr>
<tr>
<td>Z.crinita subsp. glabricaulis</td>
<td>-</td>
<td>+</td>
<td>15.75</td>
<td>120.40</td>
<td>65.07</td>
<td>47.61</td>
<td>18.10</td>
</tr>
<tr>
<td>Z.leptaurea subsp. mianensis</td>
<td>-</td>
<td>+</td>
<td>11.29</td>
<td>55.08</td>
<td>27.07</td>
<td>49.93</td>
<td>7.32</td>
</tr>
<tr>
<td>Z.purpurea</td>
<td>+</td>
<td>+</td>
<td>6.65</td>
<td>30.28</td>
<td>23.09</td>
<td>39.72</td>
<td>5.29</td>
</tr>
</tbody>
</table>
Anatomical results of cypsela showed that the testa was made of three layers: epidermis layer, collenchyma layers under the epidermis, and sclerenchyma layers in the middle. Inner layers made of parenchyma and one vascular bundle could be find in each of them (Fig. 8). Analysis of anatomical characters measured in cypsela provided useful information. Chart of PCA (principal component analysis) obtained from quantitative characters of cypsela showed in Fig. 9. Traits of the first factor (i.e., the thickness of the epicarp layers, testa and the inner endosperm) with high correlation (>0.8) with a share of 77/59% of the total variance could separate Z. purpurea isolated from other species in the vertical axis. Characters of the second factor (i.e., the thickness of the middle testa layer and testa) with a correlation coefficient (>0.3) with a share of 9/29% of the total variance separated the subspecies of Z. crinita in the horizontal axis. In all taxa prismatic crystals were found in the testa layer and the vascular tissue in the middle testa (Table 7 and Fig. 9).

Palynology

Pollen in all specimens of Zoegea which were studied was tricolporate and three pore were seen in polar view as bulge. Exine structure was covered with spines in all taxa that were somewhat different in length, but covered the entire pollen surface uniformly (Table 8 and Fig. 10). The longest length of the polar axis was observed in Z. crinita subsp. baldschuanica and the shortest length was observed in Z. purpurea. Also, the longest equatorial axis length was observed in Z. crinita subsp. baldschuanica and the shortest axis of tropical was observed in Z. leptaurea subsp. mianensis. The length of spine of the pollen in Z. leptaurea subsp. mianensis was more than the other taxa.

Morphological characters showed that Z. purpurea was well-separated from other species. Results of CVA analysis based on quantitative characters showed that Z. crinita subsp. baldschuanica wasa completely distinct taxon that could easily be differentiated from Z. crinita. But in this analysis based on qualitative characters some specimens of Z. crinita subsp. baldschuanica occurred near other members of Z. crinita.

Also, morphological characters (i.e., leaf indumentums type, indumentums type, flower color, embranchment place, radiate floret length, pappus length, external phyllary length, etc) (Tables 3 & 4) showed that Z. crinita subsp. glabriicaulis was separate from Z. crinita. Results of cypselan anatomical studies confirmed morphological results. Morphological characters could not separate Z. crinita and Z. leptaurea subsp. mianensis from each other. However, the cluster analysis by ward’s method based on quantitative morphological characters could separate Z. crinita and Z. leptaurea subsp. mianensis.
Fig. 9. PCA of the first and second factors based on Morphological quantitative cypsela features.

Since the morphological characters used in identification keys of taxonomic literatures are not suitable to distinguish these taxa. Therefore, we restablished the following taxa on the basis of the result of this study.

Zoegea baldschuanica C.Winkl.
Syn.: **Zoegea crinita** Boiss. subsp. *baldschuanica* (C.Winkl.) Rech.f.

Zoegea glabricaulis Czerep.
Syn.: **Zoegea crinita** Boiss. subsp. *glabricaulis* (Czerep.) Rech.f.

Table 8. Results obtained from evaluation of quantitative and qualitative features of pollen grains (size= µm).

<table>
<thead>
<tr>
<th>Species</th>
<th>Polar axis Length (P)</th>
<th>Equatorial axis length (E)</th>
<th>P/E</th>
<th>Form</th>
<th>Length of spine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Average</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Z. crinita subsp. crinita</td>
<td>30.79</td>
<td>31.04</td>
<td>30.92</td>
<td>30.12</td>
<td>35.00</td>
</tr>
<tr>
<td>Z. crinita subsp. baldschuanica</td>
<td>31.61</td>
<td>36.75</td>
<td>34.18</td>
<td>31.42</td>
<td>37.62</td>
</tr>
<tr>
<td>Z. crinita subsp. glabricaulis</td>
<td>26.82</td>
<td>28.75</td>
<td>27.78</td>
<td>25.89</td>
<td>28.88</td>
</tr>
<tr>
<td>Z. purpurea</td>
<td>22.93</td>
<td>24.70</td>
<td>23.81</td>
<td>29.00</td>
<td>29.37</td>
</tr>
</tbody>
</table>

P: Polar axis, E: Equatorial axis, C: Colpus Length, OS: Oblate Spheroidal, SO: Suboblate
CONCLUSION

We concluded that Zoegea baldschuanica and Z. glabricaulis were independent species. Also, it was showed that anatomical characters such as stomatal index, existence of trichome, number of ladder parenchyma layers, thickness of epicarp layers, testa layers and inner endosperm and existence of secretary channel were diagnostic characters in distinguishing the species of Zoegea.

ACKNOWLEDGEMENT

The authors are grateful to the curators of the herbaria TARI, TUH and the herbarium of Shiraz University (Shiraz, Iran).

REFERENCES

How to cite this article: