The genus Allium (Amaryllidaceae) in Iran: on the status of Allium ampeloprasum L. and its relatives

Mina Khorasani 1, Shahryar Saeidi Mehrvarz 1* & Shahin Zarre 3

Received: 04.12.2017 / Revised: 13.03.2018 / Accepted: 19.03.2018 / Published: 21.12.2018

1Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
2Center of Excellence in Phylogeny and Department of Plant Sciences, School of Biology, College of Science, University of Tehran, P.O. Box, 14155-6455 Tehran, Iran
3*Correspondent author: saeidimz@guilan.ac.ir

Abstract. Allium ampeloprasum (Amaryllidaceae) is recorded as a new taxon for the flora of Iran. It is morphologically most similar to Allium atroviolaceum and Allium iranicum. This species is compared with its two aforementioned relative species and some notes are given on its affinities. A full description, images and a distribution map are also provided. In addition, a lectotype is selected for A. atroviolaceum.

Keywords. Asia, distribution pattern, flora, lectotype, taxonomy

INTRODUCTION

The genus Allium L. (Amaryllidaceae) comprises more than 900 species, making it one of the largest monocotyledonous genera (Govaerts et al., 2013). Allium species have adapted to diverse habitats and display a remarkable polymorphism, which is the main reason for the widely recognized difficulties in their taxonomy and classification (Fritsch & Friesen, 2002). Members of Allium are distributed mainly in the Mediterranean regions, southwestern and parts of Central Asia (Mathew, 1996; Fritsch et al., 2010). Southwestern Asia, especially Iran, is known as an important center of diversity of this genus (Akhavan et al., 2014). The most recent classification of the genus proposes 15 subgenera and 56 sections in the genus (Friesen et al., 2006). This genus has been reported with 139 species in the area of Flora Iranica, among which 75 species are present in Iran (Wendelbo, 1971).

چکیده
Allium ampeloprasum به عنوان یک آرایه جدید برای فلور ایران گزارش می‌شود. این گونه از نظر ریخت‌شناسی بسیار شبیه به گونه‌های Allium atroviolaceum و Allium iranicum است. ریخت‌شناسی این گونه با دو گونه نزدیک آن مقایسه و توضیحاتی در مورد رابطه خویشاوندی آنها ارایه می‌شود. A. atroviolaceum در این مطالعه معرفی می‌گردد.

واژه‌های کلیدی. آسیا، الگوی پراکنش، فلور، لکتوتیپ
The recent investigations have shown that this number should be increased considerably (Khassanov et al., 2006; Razyfard et al., 2011; Memariani et al., 2012). Currently, about 121 species are known to grow in Iran (Fritsch & Maroofi, 2010) classified into 7 subgenera and 29-30 sections (Friesen et al., 2006; Fritsch et al., 2006). \textit{Allium} subg. \textit{Allium} is the largest subgenus, comprising almost 40\% of the total species (ca. 280 species) classified in 10 sections (Hanelt, 1996; Friesen et al., 2006).

\textit{Allium} sect. \textit{Allium} is one of the most economically important sections of the genus, comprising several medicinal and edible species such as \textit{A. porrum} L. (leek), \textit{A. sativum} L. (garlic), and \textit{A. ampeloprasum} L. (wild leek). The species of the sect bear well-developed bulbs, solid (V-shaped or flat) or fistulose leaves and stamens arranged in two whorls, the outer three usually simple and the inner three markedly tricuspidate (Mathew, 1996). It has been suggested that those members distinctly dimorphic in stamens, i.e. the members of \textit{A. sect. Allium}, stand apart from the other sections of \textit{A. subg. Allium} (Hanelt, 1996).

\textit{Allium} sect. \textit{Allium} comprises about 112–115 species worldwide, of which at least 30, including 6 endemics, grow in Alborz and Zagros mountain ranges in the North and the West of Iran (Wendelbo, 1971; Mathew, 1996; Hosseinzadeh et al., 2009; Miryeganeh & Movafeghi, 2009). Wendelbo (1971) listed two subspecies under \textit{A. ampeloprasum} subsp. \textit{iranicum} Wendelbo and subsp. \textit{ampeloprasum} in Iran. However, he considered \textit{A. ampeloprasum} subsp. \textit{iranicum} to be distributed only in Iran, and separated it from \textit{A. atroviolaceum} Boiss. by having acute tepals and stamen filaments non-verrucate on surface. Later on, this subspecies was raised to specific rank as \textit{A. iranicum} (Wendelbo) Wendelbo, still considered to be closely related to \textit{A. ampeloprasum} which should be absent in Iran wildly (Wendelbo, 1985).

The reports showed that \textit{A. ampeloprasum} comprises a species complex with various ploidy levels of 2\textit{n} = 16-64 (Hirschegger et al., 2010; Guenaoui, et al., 2013) over the Mediterranean countries (Mathew, 1996; Fritsch & Friesen, 2002). The members of the complex were divided into four horticultural groups: leek, kurrat, great headed garlic (GHG) and pearl onion (Jones & Mann, 1963). Other domesticated species were later recorded as Tare Irani, Prei-anak, pearl-onion, and mushu-ninniku (Tabbaz, 1971; Van der Meer & Hanelt, 1990; Ariga et al., 2002). Based on the recent molecular data, the tetraploid accessions of \textit{A. ampeloprasum} form a single subgroup closely related to \textit{A. atroviolaceum} and \textit{A. iranicum}, but interspecific relationships still remain unresolved (Hirschegger et al., 2010).

The aims of the present study were: 1) to clarify possible occurrence of \textit{A. ampeloprasum} in Iran, 2) to provide a complete description for this taxon, and 3) to compare it with its close relatives, i.e. \textit{A. atroviolaceum} and \textit{A. iranicum}.

\textbf{Table 1.} Collection data for three species of \textit{Allium sect. Allium} examined in Iran.

<table>
<thead>
<tr>
<th>Species</th>
<th>Collection data</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{A. ampeloprasum} L.</td>
<td>Mazandaran: SE Behshahr, Hezarjarib village, 1900 m, M. Khorasani 45224 (TUH); SW Sari, Dodangeh dam, 1350 m, M. Khorasani 5983 (GUH); S Babol, Khajeh Kola village, 1300 m, M. Khorasani & M. R. Rahimi 5984 (GUH).</td>
</tr>
<tr>
<td>\textit{A. atroviolaceum} Boiss.</td>
<td>Kurdestan: Babol, 3 km to Mosakhey village, toward Mehdikhey village, 600 m, M. Khorasani 5985 (GUH)</td>
</tr>
<tr>
<td>\textit{A. iranicum} (Wendelbo)</td>
<td>Mazandaran: Babol, 3 km to Mosakhey village, toward Mehdikhey village, 600 m, M. Khorasani 5986 (GUH). Kurdestan: Dehgolan, Sis village, 1904 m, M. Khorasani 5986 (GUH). Hamedan: 2 km to Asad Abad, 1672 m, M. Khorasani 5987 (GUH).</td>
</tr>
<tr>
<td></td>
<td>Mazandaran: Haraz road, Vana region, 1439 m, M. Khorasani 5988 (GUH). Kordestan: Road of Kooleh to Divandarreh, 15 km to Divandarreh, Tazeh Abad village, 2120 m, M. Khorasani 5989 (GUH). Hamedan: Asad Abad, after Khandagh village, Ghasem abad village, Karkas mountain (Karkasin) 2896 m, M. Khorasani 5990 (GUH).</td>
</tr>
</tbody>
</table>
MATERIALS AND METHODS

In order to address the status of *A. ampeloprasum* in Iran, extensive field collections were conducted during 2014-2016 in Iran. Many parts of Alborz and Zagros mountain ranges were visited by the first author. The sampling was focused on the following taxa: *A. ampeloprasum*, *A. atroviolaceum* and *A. iranicum*. The specimens were studied and photographed in field from several localities and scored for certain morphological features. A list of voucher specimens for this study, held in the herbaria GUH (Guilan University Herbarium) and TUH (University of Tehran Herbarium), is provided in Table 1. In addition, we examined the photographs of the type materials provided by various virtual herbaria and 'Global Plants on JSTOR' (https://plants.jstor.org/) of the mentioned taxa.

RESULTS AND DISCUSSION

Taxonomic treatment

A. ampeloprasum L., Sp. Pl. 294 (1753) (Fig. 1).

Phenology: Flowering in May-June and fruiting in July-August.

Ecology: *A. ampeloprasum* grows in wet soils in association with other species such as *Urtica dioica* L. and *Salix alba* L. in Iran. It prefers clay soils in the shadow of trees. It is known in several localities in Mazandaran Province as wild and probably has a wider distribution range in humid areas of north Iran. Specimens seen in Iran (Fig. 4): Northeast, Prov. Mazandaran: SE Behshahr, Hezarjarib village, 1900 m, N 36° 39' 43.14", E 53° 38' 23.43", 13 June 2014, M. Khorasani 45224 (TUH); SE Sari, Dodange Dam, 1350 m, N 36° 28' 12.94", E 53° 4' 23.86", 29 May 2014, M. Khorasani 5983 (GUH); S Babol, village, 1900 m, N 36° 28' 12.94", E 53° 38' 23.43", 13 June 2014, M. Khorasani 5984 (GUH).

Description: Herbaceous, bulbous plants. Bulbs ovoid to subglobose, aggregate, 3.5-4.5 cm; outer tunics papery, + longitudinally splitting, white; the innermost tunics coriaceous, yellowish; bulblets 3-4, placing at base and tip of bulbs, 0.5-0.6 mm diam., yellowish-brown. Leaves 6-8, narrowly lanceolate to linear, alternate, thick, ascending arcurately, canaliculate, glabrous, deep green, 35-45×1.5-3(5) cm; sheath 5-11 cm long, glabrous, initially green, after anthesis white-greyish, soon decaying. Scape cylindrical, erect, smooth, strong, green, 50-130 cm. Scape sheath 5-20 cm long, glabrous, yellowish, ± longitudinally splitting. Flowers 10-25 in a terminal inflorescence, 1.5-4 cm long; filament 2.5-4 mm; anther 2.5-3 mm; ovary 3.5-4 mm. Siliculum 7-12 mm long, glabrous, orange, ± longitudinally splitting.
Khorasani et al. status of *Allium ampeloprasum* L. and its relatives

(180) cm long, near base 1.5-2 cm diam. Spatha funnel shaped, caudate, thick, initially deep green, covering the inflorescence, after anthesis white with green veins, divided into 1-3(4) ovate to semi-globose parts. Inflorescence globose, dense, many-flowered (up to 200), ca. 7-8 cm in diam, in the fruiting stage even larger. Pedicel thick, wire like, straight, stiff, unequal, 3-4 (5) cm long, same color as tepals, upper side pale pink-whitish. Tepals oblong, navicular, obtuse, throughout verrucose, 4-5 mm long, 2-3 mm wide, only basally united, erect after anthesis, pale pink, purple-whitish, lilac or green, sometimes with a green or purple midvein. Filaments longer than tepals, basally 0.5-0.7 mm connate and 1-1.5 mm adnate to the tepals, white or purplish, dimorphic, with three simple and triangular filaments (5-6 mm long) with minute lateral cusps and three tricuspidate filaments filiform at apex with expanding lateral cusps (8-12 mm long), white, verrucose. Anther oblong, 0.8-1.2 mm long, pinkish. Ovary subglobose, pear-shaped with ± sharp bulges, surface finely coarse, sessile, 5 × 3 mm, green. Style narrowly conical, thread like, 3-4 mm long, white. Stigma undivided, subcapitate, white. Capsule triangular-subglobose, 5-6 × 4-5 mm, opening with 3 narrow slits, valves subovate, light brown. Seeds 1(-2) per capsule, ovate, drop-shaped, acuminate, 3 × 2 mm, blackish in color.

Fig. 1. *Allium ampeloprasum*. A: Habitat; B: Habit; C, D: Inflorescence with the verrucose tepals and the filiform filaments; E: Aggregate bulb; F: Bulblets in base and apex of bulb, (Photo by M. Khorasani).
Fig. 2. Allium iranicum. A: Habit; B: Inflorescence; C: Aggregate bulb and bulblets at the base and on the scape, (Photo by M. Khorasani).

Note: According to the description given in Flora of the U.S.S.R. (Vvedensky, 1935), the main features of *A. ampeloprasum* are as follows: a scape arising laterally from the bulb leading to its easy recognition from its closely related species, i.e. *A. iranicum*, previously identified as a subspecies of *A. ampeloprasum* in Flora Iranica (Wendelbo, 1971) and Flora of Turkey (Kolmann, 1984). *Allium ampeloprasum* is known from Europe to Asia, especially in regions such as England, west Mediterranean, Turkey, Iraq, Syria, Cyprus, Lebanon, Palestine, Jordan, Egypt, Arabia, Russia, Turkmenistan, Kazakhstan, east Caspian Sea, and Caucasus mountains (Vvedensky, 1935; Wendelbo, 1971; Kolmann, 1984; Wendelbo, 1985; Mathew, 1996; Fritsch & Friesen, 2002). Therefore, the occurrence of this species in Iran is not unexpected.

The species is closely related to *A. iranicum* and *A. atroviolaceum* (A. sect. Allium) due to verrucate tepals and ovaries, dimorphic filaments and alternate leaves, but differs from them by several characters (Table 2). The absence of bulblets on the scape and the obtuse tepals in *A. ampeloprasum* are the most important characteristic features separating *A. ampeloprasum* from *A. iranicum*. It differs from *A. atroviolaceum* by having pale pink and purple-whitish flowers, subglobose bulblets and papery or coriaceous tunics (Figs. 1-3). A previous study indicated six independent groups in *A. sect. Allium* based on tunic type, presence of bulbils in inflorescence, shape of leaf and mode of anther anthesis (Mathew, 1996). In the same work, in *A. ampeloprasum* group, three close species, i.e. *A. iranicum*, *A. atroviolaceum* and *A. ampeloprasum* were separated from each other, based on tunic type, shape and position of bulblets, leaf shape and color, and shape of tepals, which are consistent with our findings.
Fig. 3. Allium atroviolaceum. A: Habit; B: Inflorescence; C: Solitary bulb and bulblets at the base of bulb, (Photo by M. Khorasani).

Fig. 4. Distribution map of A. ampeloprasum (white star) and its allies: A. atroviolaceum (white square) and A. iranicum (black triangle), according to the collection data and herbaria specimens by the authors.
Table 2. Morphological comparison between *A. ampeloprasum* and its two relatives.

<table>
<thead>
<tr>
<th>Characters</th>
<th>A. ampeloprasum</th>
<th>A. iranicum</th>
<th>A. atroviolaceum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulb</td>
<td>aggregate–solitary</td>
<td>aggregate</td>
<td>solitary</td>
</tr>
<tr>
<td>Bulblet position</td>
<td>base and tip of bulb</td>
<td>base and on the scape</td>
<td>base of bulb</td>
</tr>
<tr>
<td>Outer tunics</td>
<td>papery, entire, prolonged</td>
<td>papery–white</td>
<td>reticulate fibrous–brown</td>
</tr>
<tr>
<td>Inner tunics</td>
<td>coriaceous</td>
<td>Papery</td>
<td>papery</td>
</tr>
<tr>
<td>Scape length</td>
<td>50–130 (150)×1.5–2 cm</td>
<td>40–60×0.3–0.8 cm</td>
<td>50–100×0.4–0.9 cm</td>
</tr>
<tr>
<td>Scape type</td>
<td>lateral and central</td>
<td>Central</td>
<td>central</td>
</tr>
<tr>
<td>Leaf size</td>
<td>35–45×1.5–3 (5) cm</td>
<td>20–45×0.6–0.9 cm</td>
<td>19–28×0.4–1 cm</td>
</tr>
<tr>
<td>Pedicel color</td>
<td>purple, reddish, lilac or</td>
<td>Purple</td>
<td>purple</td>
</tr>
<tr>
<td></td>
<td>green</td>
<td></td>
<td>dark purple or blackish–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maroon, sometimes</td>
</tr>
<tr>
<td>Tepal color</td>
<td>pale pink, purple–whitish</td>
<td>bright pink, with</td>
<td>vinous–purple, rarely</td>
</tr>
<tr>
<td></td>
<td>lilac or green, sometimes</td>
<td>purple midvein or</td>
<td>dirty greenish</td>
</tr>
<tr>
<td></td>
<td>with a green</td>
<td>purple in upper part,</td>
<td>obtuse</td>
</tr>
<tr>
<td></td>
<td>or purple midvein</td>
<td>shining</td>
<td>purple or green</td>
</tr>
<tr>
<td>Tepal apex</td>
<td>obtuse</td>
<td>± acute</td>
<td></td>
</tr>
<tr>
<td>Ovary color</td>
<td>green</td>
<td>Purple</td>
<td>± present</td>
</tr>
<tr>
<td>Verrucae in the base of</td>
<td>present</td>
<td>± present</td>
<td>± present</td>
</tr>
<tr>
<td>the filaments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulblet shape</td>
<td>subglobose and helmet-shaped</td>
<td>elliptic and</td>
<td>elliptic and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>helmet-shaped</td>
<td>helmet-shaped</td>
</tr>
</tbody>
</table>

Based on our field observations, *A. ampeloprasum* is growing wild in Iran and not, as previously reported (Wendelbo, 1981), only as a cultivated plant (Fig. 3). According to available data and obtained findings, we recognize *A. ampeloprasum* to be separated from *A. iranicum* and follow the treatment in Flora of U.S.S.R. (Vvedensky, 1935), Flora of Iraq (Wendelbo, 1985) and the review of Mathew (1996) on A. sect. *Allium* on this species group.

Typification of Allium atroviolaceum

There are many duplicates of the type specimens in different herbaria. In G we found three specimens, thus, no single specimen could serve as holotype. Therefore, here we select the aforementioned specimen as the lectotype because it was the most complete one and agreed well with the protologue.

ACKNOWLEDGEMENT

This research was supported by the University of Guilan. The authors gratefully acknowledge anonymous reviewers for their very helpful comments, which improved the manuscript. Our best thanks to Mr. GH. H. Veiskarami for his useful collaboration. We also thank Mohammad Reza Hariri Science Foundation for their support in the collection of samples.

REFERENCES

How to cite this article: