یافته‌های نوین در علوم زیستی جلد 3، شماره 3 :752-742 Nova Biologica Reperta  3 (3): 249-257 (2016)  

از بررسی‌هایی بر روی پروتئین‌های جمله‌ای در زمینه آنتی‌بیوتیک، فیتو‌پدیا، انتی‌بیوتیک، پدی‌گیکن، پی‌گئوینگ و بیان پروتئین‌های جمله‌ای حاصل شده‌اند.

چکیده‌ی آنتی‌بیوتیک‌یکی از شناخته‌شده‌ترین عوامل ترمولیتیک به صورت بازی بسته است. با وجود این که کاربرد آن به‌دست‌آمده باشد، امکان عوارض هموافرین و نیز عدم اثرات درمانی، همراه با خطراتی است. پیگئوینگ احتیاطی به روش‌های مختلف می‌تواند باعث افزایش عملکرد این سیستم‌ها شود. پیگئوینگ نسخه‌ای از زیرساخت‌های ارتباطی که در ساختار پروتئین‌های گروه‌های پی‌گئوینگی و برای جلوگیری از آنزیم‌های تامل‌کننده استفاده می‌شود. 

نتایج: با توجه به نتایج آزمایش‌های در مورد این پروتئین‌ها، می‌توان گفت که پروتئین‌های جمله‌ای به‌همراه ترمولیتیک‌های مطلوب می‌توانند به‌عنوان یکی از بهترین موارد درمان به‌کار گرفته شوند.

کلمات کلیدی: ترمولیتیک، پیگئوینگ، پی‌گئوینگ، نسل جدید
بوموشی‌کنی در گروه‌هایی که مصرف بالینی استرپتوکیناز، به مصرف استرپتوکیناز، انتخاب می‌شود (Baranerje et al., 2004; Baruah et al., 2005). 

**طراحی‌ها و همکاران**. کلونینگ و بیان ژن جهش‌یافته استرپتوکیناز (SK) و فعال کننده‌پلیمیوتوزن باعث انتخاب استرپتوکیناز PA و فعال کننده‌پلیمیوتوزن باعث انتخاب استرپتوکیناز PA می‌شود. این عوامل باید در مقایسه با یکدیگر نشان داده شود. از این دیدگاه، اختلاف در تغییرات بین هزینه تولید درمان با استرپتوکیناز در مقایسه با استرپتوکیناز در ریزه فعالیت FDA به طور درآمده باعث شده است (Kumar et al., 2004; Kumar et al., 2012).

استرپتوکیناز نوعی فعال کننده‌پلیمیوتوزن است و یکی از نخست‌ترین داروهایی است که توانست مجوز FDA را برای درمان سکته حاد فلیک کم کند و در فهرست‌های داروهای ضروری سازمان بهداشت جهانی (Benerjee et al., 2004; Baruah et al., 2005) تأیید کرد. (سیکری & بردیا, 2007). 

**بیوپژیکتیک** (PEG) مورد نظر، برای انتخاب و بازبینی به استرپتوکیناز نامناسب؛ به طوری که جهش می‌کنم، تنها تغییر‌هایی در فعالیت بیوپژیکتیک پروتئین ایجاد می‌کند. همچنین، بدلیل اینکه مولکول پلی‌پروتئین گلیکولی (زنجیره‌های غیر مشکل از 416 اسید آمینه) با وزن مولکولی 47 کیلودلت است، که با استرپتوکیناز مختل استرپتوکیناز، به گروه‌های G و C A توانایی می‌شود بوموشی‌کنی متعاقب مصرف به گروه‌های G و C A بوموشی‌کنی متعاقب مصرف استرپتوکیناز به گروه‌های G و C A مصرف باعث شده است (Benerjee et al., 2004; Baruah et al., 2005; Ghosh et al., 2012; Pimenta et al., 2007; Rother et al., 2013; Vellanki et al., 2013). بیشتر از این موارد استرپتوکیناز بهبود یافته در پژوهش‌های حرفه‌ای در حال توسعه باشد. با واریانس با کاربرد استرپتوکیناز بهبود یافته، این عوارض حمایت کننده‌پلیمیوتوزن بود.

ارتباط میان اسید آمینه‌های تغییرات انتخاب و اینکه استرپتوکیناز در پژوهش‌های حرفه‌ای در حال توسعه باشد. با واریانس با کاربرد استرپتوکیناز بهبود یافته، این عوارض حمایت کننده‌پلیمیوتوزن بود.

**توضیحات**

لهمنین، تحقیقات گسترده‌ای با هدف بهبود ویژگی‌های درمانی و کامش عوارض جانی استرپتوکیناز انجام مشده است (Benerjee et al., 2004; Baruah et al., 2005; Sikri & Bardia, 2007).
مواد و روش‌ها

اتنخاد اسید آمینه‌ای برای تغییر با استفاده از توالی اسید آمینه‌ای پروتئین استریکتانیز، که در پایگاه اطلاعاتی (PDB) موجود است، با باک‌گیری در پروتئین استریکتانیز تحت بررسی قرار گرفت (آمینه‌ای سطح آن به‌دست آمده در نرم‌افزار مورد نظر مشخص شد. ساختر پروتئین استریکتانیز سپاسی مشخص شد اسید آمینه‌های سطحی در درون نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد. به این منظور، ابتدا آمیک زیر آمینه‌های سطحی توسط قطعه‌سازی و معرفي ایجاد شد. از این نظر، استریکتانیز را با پایدار سازی در نرم‌افزار مصنوعی و بررسی شد.
درج 1- برای هر یک از استفاده شده جهت تکرار استرپتوکیناز جهش یافته و دست‌نخورده.

**جدول 1.** پریمروزهای استفاده شده در ایجاد تکرار استرپتوکیناز مورد استفاده قرار گرفته‌اند.

<table>
<thead>
<tr>
<th>نام پریمرا</th>
<th>توالی پریمرا</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>5'-GACGAGACATAGATGTCGGACCTGAGT-3'</td>
</tr>
<tr>
<td>R414</td>
<td>5'-GACACTGGATTTGCTAGGTTATCAG-3'</td>
</tr>
<tr>
<td>F263</td>
<td>5'-CTGGTCTGAAGATGCATAAACAACCTGAC-3'</td>
</tr>
<tr>
<td>R263</td>
<td>5'-CAGGTCAGTGTGTTAATGATTCAATCTCAG-3'</td>
</tr>
</tbody>
</table>

*نویسنده‌ها: رضایی و همکاران. کلونینگ و بیان ژن جهش‌یافته استرپتوکیناز. نی‌دی‌ای/ورونیل، رومانیا (Fermentus, Romania)*

**نتایج**

کلئنینگ در کنجنه‌های آزمایشگاهی (فلمترانس، رومانیا) NdeI/XhoI بدون همان تنب‌های موجود در تکرار استرپتوکیناز دست‌نخورده و جهش‌یافته تحت تأثیر قرار گرفت. وجود به‌اندازه‌ای اختصاصی استرپتوکیناز در نمونه‌های در مرحله‌ای نامی‌سازی می‌شود (شکل 1). سازه‌هایی از حیاتی دست‌نخورده و جهش‌یافته که هم‌راه با جهش‌یافته در مجموعه‌ای از پیوسته‌های مانند pET26b(+)، pETSK263Cys و pETSK414 شناسایی شدند. درون سلول‌های مربوط به استرپتوکیناز اثرپذیر کلئنینگ همزمان با ورود pET26b(+) به محله مرموزی کلونینگ ترنشفر شدند. (Sambrook & Russell, 2001) با استفاده از کلون‌های حاوی و کمونورونز در محیط کشت کاناماسیفایی نمونه‌های مربوط به کلون‌های آزمایشگاهی رضایی و همکاران (Shim et al., 2011) به یافتن نتایج تأیید نمی‌کند. هم‌راه با جهش‌یافته از جهش‌یافته استرپتوکیناز جهش‌یافته برای اطلاعات وجودی آزمایشگاهی شناسایی شدند. با همان نتایج نهایی، یالسیدی توزیع کم حاوی جهش‌یافته استرپتوکیناز و با افزایش خصوصیت در جهشپذیری مربوط به وصله‌های گروه‌های هم‌راهی می‌باشد.

**شکل**

کورنگی و چارچوب تغییر تولیدی در یک جریان تغییر نتیجه‌گیری در کاربردی بیانگر می‌باشد. با توجه به نتایج تاکید بر اینکه ژن جهش‌یافته در جهش‌یافته استرپتوکیناز رضایی و همکاران (Shim et al., 2011) شناسایی شد.

**جدول 2**

<table>
<thead>
<tr>
<th>تکرار</th>
<th>کلون‌های مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>5'-GACGAGACATAGATGTCGGACCTGAGT-3'</td>
</tr>
<tr>
<td>R414</td>
<td>5'-GACACTGGATTTGCTAGGTTATCAG-3'</td>
</tr>
<tr>
<td>F263</td>
<td>5'-CTGGTCTGAAGATGCATAAACAACCTGAC-3'</td>
</tr>
<tr>
<td>R263</td>
<td>5'-CAGGTCAGTGTGTTAATGATTCAATCTCAG-3'</td>
</tr>
</tbody>
</table>

واژه‌های پسواژه‌ی بیانگر رضایی و همکاران (Shim et al., 2011) همکاران (Sambrook & Russell, 2001) با استفاده از کلون‌های حاوی و کمونورونز در محیط کشت کاناماسیفایی نمونه‌های مربوط به کلون‌های آزمایشگاهی رضایی و همکاران (Shim et al., 2011) به یافتن نتایج تأیید نمی‌کند. هم‌راه با جهش‌یافته از جهش‌یافته استرپتوکیناز جهش‌یافته برای اطلاعات وجودی آزمایشگاهی شناسایی شدند. با همان نتایج نهایی، یالسیدی توزیع کم حاوی جهش‌یافته استرپتوکیناز و با افزایش خصوصیت در جهشپذیری می‌باشد.

**شکل**

کورنگی و چارچوب تغییر تولیدی در یک جریان تغییر نتیجه‌گیری در کاربردی بیانگر می‌باشد. با توجه به نتایج تاکید بر اینکه ژن جهش‌یافته در جهش‌یافته استرپتوکیناز رضایی و همکاران (Shim et al., 2011) شناسایی شد.

**جدول 2**

<table>
<thead>
<tr>
<th>تکرار</th>
<th>کلون‌های مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>5'-GACGAGACATAGATGTCGGACCTGAGT-3'</td>
</tr>
<tr>
<td>R414</td>
<td>5'-GACACTGGATTTGCTAGGTTATCAG-3'</td>
</tr>
<tr>
<td>F263</td>
<td>5'-CTGGTCTGAAGATGCATAAACAACCTGAC-3'</td>
</tr>
<tr>
<td>R263</td>
<td>5'-CAGGTCAGTGTGTTAATGATTCAATCTCAG-3'</td>
</tr>
</tbody>
</table>
تشکل 1- نمایی شماتیک از وکتور pET-26b و جایگاه ورود زن استرپتوکیناز، زن‌های استرپتوکیناز و ندیل، نیز جهش‌های ویژه استرپتوکیناز از طریق جایگاه‌های پری تیماتیک‌های آنزیم‌های XhoI و Ndel در وکتور وارد شده‌اند.

Fig. 1. Schematic illustration of pET-26b vector and insertion site of streptokinase gene. Intact and mutated streptokinase genes were inserted into the vector by NdeI and XhoI restriction sites.

شکل 2- ساختار کمپلکس استرپتوکیناز-پلاسمینوگن.

Fig. 2. Structure of streptokinase-plasminogen complex.
شکل ۳- الکتروفروژ محصولات PCR روی زن آلکاز. A: تکرار قطعات همیوشان حاوی جهش، فرنماس، سوئن ۱، مارکر (۱ کیوبیوپل). B: تکرار زن استرپتوکیناز جهش، فرنماس، سوئن ۱، استرپتوکیناز جهش، فرنماس، سوئن ۲، مارکر (۱ کیوبیوپل).}

**Fig. 3.** Gel electrophoresis of PCR products. A: Amplification of overlapped fragments containing mutation; lane 1, Fermentas DNA ladder, 1kb (SM0313); lane 2, 789 base pair fragment; lane 3, 453 base pair fragment. B: Amplification of mutated streptokinase gene; lane 1, mutated SK; lane 2, Fermentas DNA ladder, 1kb (SM0313).

شکل ۴- توالی نوکلئوتیدی آنالوگ سیستینی SK263Cys که گوند سیستین در آن مشخص شده است.

**Fig. 4.** Nucleotide sequence of cysteine analogue SK263Cys that cysteine codon is distinct in it.

در مطالعه حاضر تصمیم گرفته شده است تا با طراحی و ساخت استرپتوکیناز جهش جدید حاوی سیستین (به غیر از جهش‌هایی که محفظان دیگر ایجاد کرده‌اند)، امکان انجام پیگلاسایون اختصاصی روی این پروتئین‌ها را داریم. در ایران فراهم شود. جهت Kumar et al., 2012; Monzavi et al., 2010 پروتئین یکپارچه درنظر گرفته شد که به نتایج تحقیقی که می‌توانست موجب وارسی شدن و غیرفعال شدن پروتئین‌ها شود، کرومتوگرافی فیلتراسیون زلی انجام گرفت. نمودارهای حاصل از فیلتراسیون زلی پروتئین استرپتوکیناز دست نخورده و جهش باستفاده‌ای از آن سطادگاس ۱۱، نشان دهنده خروج اوره از محلول‌های پروتئینی بود (شکل ۵) محلول‌های پروتئینی بسیار تعیین‌پذیر و انتخابی هرگونه روابط و نجوم پروتئینی بود. اما نتایج غلظت‌سنجی نشان داد که محلول‌های پروتئینی تقریباً درونی برای رقیق شدنانداه.

**بحث**

به یکی از مهم‌ترین روش‌های بهینه‌سازی استرپتوکیناز، پیگلاسایون اختصاصی روی اسید‌آمنی سیستین است. نتایج مطالعات بیشین این مدل‌ها، تحقیق در صورت توجه به ویژگی‌های مختلف و عمل کردن پروتئین استرپتوکیناز، می‌توان با هزینه و ثقل فعالیت پیآمین بازیکرده.

**شکل ۵:** A: تحلیل SDS-PAGE پروتئین دست‌نخورده و جوش‌پذیر استریتوکیناز؛ ستون ۱: پروتئین فیلتراسیون، ستون ۲: پروتئین استریتوکیناز جوش‌پذیر، ستون ۳: پروتئین استریتوکیناز مارک‌سازی‌شده، ستون ۴: پروتئین استریتوکیناز دست‌نخورده. B: Blue Plus.

**شکل ۶:** A: گرافیک جریان چربی از پروتئین استریتوکیناز: ستون ۱: پروتئین استریتوکیناز جوش‌پذیر، ستون ۲: پروتئین استریتوکیناز مارک‌سازی‌شده، ستون ۳: پروتئین استریتوکیناز دست‌نخورده.

**A:** SDS-PAGE analysis of intact and mutated streptokinase proteins; lane 1, intact streptokinase; lane 2, non-induced SK; lane 3, Blue Plus protein marker; lane 4, Mutated streptokinase. **B:** Western blot analysis of SK proteins; lane 1, intact streptokinase; lane 2, Mutated streptokinase; lane 3, pre-stained Blue Plus protein marker.

**A:** Diagrams of gel filtration chromatography; diagram A: separation of urea from mutated SK; diagram B: separation of urea from intact SK; in both of diagrams the first peak is related to protein and the second peak is related to urea.

**A:** Diagrams of gel filtration chromatography; diagram A: separation of urea from mutated SK; diagram B: separation of urea from intact SK; in both of diagrams the first peak is related to protein and the second peak is related to urea.

**A:** SDS-PAGE analysis of intact and mutated streptokinase proteins; lane 1, intact streptokinase; lane 2, non-induced SK; lane 3, Blue Plus protein marker; lane 4, Mutated streptokinase. **B:** Western blot analysis of SK proteins; lane 1, intact streptokinase; lane 2, Mutated streptokinase; lane 3, pre-stained Blue Plus protein marker.

**A:** Diagrams of gel filtration chromatography; diagram A: separation of urea from mutated SK; diagram B: separation of urea from intact SK; in both of diagrams the first peak is related to protein and the second peak is related to urea.
REFERENCES


**How to cite this article:**


