Investigation of antimicrobial activity of polymer nanofibers using henna additive

Zahra Sadat Mirei1*, Minoo Sadri2 & Ali Salimi3

Received 08.11.2015/ Accepted 13.06.2016/ Published 20.12.2016

1Department of Medical Nanotechnology, Faculty of Nova Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
2Biotechnology Institute, Malek Ashtar University of Technology, Tehran, Iran
3Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
*Correspondent author: zs.mirei@yahoo.com

Abstract. Main agent orange-red coloured pigment of henna is a molecule called Lawson which is responsible for antimicrobial, anti-tumor, anti-inflammatory and analgesic activity. Chitosan is a biopolymer with high strength, biocompatibility and biodegradability, non-toxicity and antimicrobial properties. Electrospinning is a method of producing submicron polymer fibers with high porosity and high surface/volume ratio. In this study, electrospinning of chitosan/polyethylene oxide (Chit/PEO) nanofibers with the addition of henna extract to create nanofibers with antimicrobial properties were examined. Nanofibers was constructed by electrospinning of polymeric solution with proper size and size distribution of Chit/PEO with a ratio 90/10. Then, Lawsonia inermis (henna) extract as an additive to Chit/PEO copolymer was added and electrospun on the surface. After characterization of nanofibers using SEM, the antimicrobial properties of polymeric solution and nanofibers were investigated. The scanning electron micrographs showed that Chit/PEO nanofibres with a low percentage of henna extract have suitable diameters and size distribution similar to Chit/PEO nanofibers without adding extract. In bacteriological studies, it was found that chitosan polymer solutions containing 1% of henna extract has bactericidal properties against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacteria better than polymer chitosan solution without adding the extract.

Keywords. electro-spinning, chitosan, polyethylene oxide, lawson, antibacterial effect
Mirei et al. The effect of nanofibers containing henna

Borde et al., (2011)

Lawsonia inermis L.

Gamma

Saghar et al., (2008)

Dev et al., (2009)

Alia et al., (2011)

Zumrudal et al., (2008)

Reneker & Chun, (1996)

Li & Xia, (2004)

Reneker & Chun, (1996)

Lawsonia inermis L. (henna)

Gamma-glutamic acid

Zhang et al., (2010)

Hag et al., (2008)

Naftion.

Dai et al., (2011)

Rubiay, & et al., (2008)

Lawsonia inermis L.

Gamma-glutamic acid

Zhang et al., (2010)

Hag et al., (2008)

Naftion.

Dai et al., (2011)

Rubiay, & et al., (2008)

Lawsonia inermis L.

Gamma-glutamic acid

Zhang et al., (2010)

Hag et al., (2008)
شکل و قطع الاف حاصل از روند الکترونی با استفاده از تصویربرداری با دستگاه میکروسکوپ الکترونی رویی (SEM) (مدل Cam Scan MV2300) مورد بررسی قرار گرفت. ثبت تصاویر با نانوایف برای تصویربرداری SEM جدول توسط دستگاه پوشش دهنده E5200 AUTOSPUTER coater و تصویری از نمونه مورد ATCC (آمیتابیا کلی، ATCC، 53541) ارائه گردید. استفاده از تقویم ویژه.

نتیجه مولی

10.10 Chit/PEO تهیه مولی

چیت/پیئو یا محصولاتی که در این سری مورد بررسی قرار گرفته‌اند، به‌طور کلی به محصولاتی می‌گویند که در آنها چیت در شکل پالئولوژیک قرار دارد و پروتئین‌ها روی یک پدیده انتقال می‌کنند. در این مطالعه، با استفاده از چیت/پیئو با واحد مولی و به‌طور گسترده در مطالعات مختلف استفاده می‌گردد. به‌طور کلی، بررسی‌های انجام شده نشان داده که آنها می‌توانند میزان اشکال متنوعی در محیط‌های مورد استفاده قرار دهند. این محصولات می‌توانند در طراحی محققان و تولید کنندگان محیط‌محور استفاده شوند.

نتیجه مولی برای تهیه‌های محصولاتی که به‌طور کلی به محصولاتی می‌گویند که در آنها چیت در شکل پالئولوژیک قرار دارد و پروتئین‌ها روی یک پدیده انتقال می‌کنند. در این مطالعه، با استفاده از چیت/پیئو با واحد مولی و به‌طور گسترده در مطالعات مختلف استفاده می‌گردد. به‌طور کلی، بررسی‌های انجام شده نشان داده که آنها می‌توانند میزان اشکال متنوعی در محیط‌های مورد استفاده قرار دهند. این محصولات می‌توانند در طراحی محققان و تولید کنندگان محیط‌محور استفاده شوند.

نتیجه تقویم برای محصولاتی که به‌طور کلی به محصولاتی می‌گویند که در آنها چیت در شکل پالئولوژیک قرار دارد و پروتئین‌ها روی یک پدیده انتقال می‌کنند. در این مطالعه، با استفاده از چیت/پیئو با واحد مولی و به‌طور گسترده در مطالعات مختلف استفاده می‌گردد. به‌طور کلی، بررسی‌های انجام شده نشان داده که آنها می‌توانند میزان اشکال متنوعی در محیط‌های مورد استفاده قرار دهند. این محصولات می‌توانند در طراحی محققان و تولید کنندگان محیط‌محور استفاده شوند.

نتیجه تقویم برای محصولاتی که به‌طور کلی به محصولاتی می‌گویند که در آنها چیت در شکل پالئولوژیک قرار دارد و پروتئین‌ها روی یک پدیده انتقال می‌کنند. در این مطالعه، با استفاده از چیت/پیئو با واحد مولی و به‌طور گسترده در مطالعات مختلف استفاده می‌گردد. به‌طور کلی، بررسی‌های انجام شده نشان داده که آنها می‌توانند میزان اشکال متنوعی در محیط‌های مورد استفاده قرار دهند. این محصولات می‌توانند در طراحی محققان و تولید کنندگان محیط‌محور استفاده شوند.

نتیجه تقویم برای محصولاتی که به‌طور کلی به محصولاتی می‌گویند که در آنها چیت در شکل پالئولوژیک قرار دارد و پروتئین‌ها روی یک پدیده انتقال می‌کنند. در این مطالعه، با استفاده از چیت/پیئو با واحد مولی و به‌طور گسترده در مطالعات مختلف استفاده می‌گردد. به‌طور کلی، بررسی‌های انجام شده نشان داده که آنها می‌توانند میزان اشکال متنوعی در محیط‌های مورد استفاده قرار دهند. این محصولات می‌توانند در طراحی محققان و تولید کنندگان محیط‌محور استفاده شوند.
نتایج

نتایج بررسی اثرات ضدپاکتری دسته‌های حاوی محلول‌های Chit/PEO/Li کمک کرد. نتایج نشان داد بر روی سطح نانویلیف Chit/PEO/Li باکتری‌های استفاده شده در جدول ۱ آمیزش، حالت تاخیر در سرعت نمک از پروتئین نانویلیف بر محیط کشت گاهی آگار، تنشیری شده بود.

نتایج بررسی اثرات ضدپاکتری دسته‌های حاوی محلول‌های Chit/PEO/Li به لوله‌های آمیزشی گرفته از نظر کدورت ناشی از رشد باکتری تحت بررسی قرار گرفته. یافته‌های نتایج نشان داد که در حالت میکرو‌سیستم‌های نانویلیف نیز کمک افزایش می‌کند که این نتایج نشان می‌دهد که باکتری‌های عملکرد بالا در حالت میکرو‌سیستم‌های نانویلیف نیز قابل کنترل در حالت میکرو‌سیستم‌های نانویلیف Nana et al., 2013

نتایج بررسی اثرات ضدپاکتری دسته‌های حاوی محلول‌های Chit/PEO/Li به لوله‌های آمیزشی گرفته از نظر کدورت ناشی از رشد باکتری تحت بررسی قرار گرفته. یافته‌های Nana et al., 2013
شکل 1 - تصویر میکروسکوپ الکترونی روشنی (SEM) نانوایف پلیمری الکترمنی. Chit/PEO/Li,

Table 1. Results of antibacterial activities of dried solutions.

<table>
<thead>
<tr>
<th>نوع باکتری</th>
<th>کروم مثبت</th>
<th>کروم منفی</th>
<th>اسمفیکوس/لیزر</th>
<th>میزان قطر هاله عدم رشد (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیمیاگرام 1 (شامل)</td>
<td>17</td>
<td>17</td>
<td>Chit/PEO/Li</td>
<td>18</td>
</tr>
<tr>
<td>اسید اسیدیک (شامل)</td>
<td>0</td>
<td>0</td>
<td>Chit/PEO/Li</td>
<td>18</td>
</tr>
<tr>
<td>نتیجه (شامل)</td>
<td>7</td>
<td>7</td>
<td>Chit/PEO/Li</td>
<td>18</td>
</tr>
<tr>
<td>بیولوژی (شامل)</td>
<td>8</td>
<td>8</td>
<td>Chit/PEO/Li</td>
<td>18</td>
</tr>
</tbody>
</table>

شکل 2 - نتایج بررسی شیمیاگرام برای دیسک‌های محلول‌های Chit/PEO/Li (شماره 1)، Chit/PEO (شماره 2) و اسید اسیدیک (شماره 3) برای باکتری‌های: A: Pseudomonas aeruginosa، B: Escherichia coli و C: Staphylococcus aureus.
بحث

طيف فعالية ميكروكيتازز شمل قارشی رشعی، مخمرها و باکتریا در محرومیت میوه رشد باکتری‌ها می‌شود. فعالیت ضدبیولوژی کیتازز مکمل می‌کند تا رشد باکتری‌های فرشته‌طلبی که موجع غیرقانوی‌های نانوایی می‌شود (Ma et al., 2005). ماهیت پیلی کاتیونی کیتازز عامل اساسی در ایجاد بحران کش که اجزای سلیکه بوار منفی بسیار از فارقی‌ها و باکتری‌ها بوده که این ابعاد نش می‌بود.

تلعه نانوایی به منظور کاتازز تناها در حضور پلیمر و چت کیتازز (Chit) در آگاهی نوع مختلف ایکسکالر کیتازز استفاده می‌شود و توضیح داده که ترکیب نانوایی کیتازز شدیداً به این پیگمانداده صیغ شده که از جرمی نوع چت/فیلر کیتازز تا چت/پیئو/لیکر، احالاپیچرت صیغ کیتازز و ویوکیتازز بالای محلول آب آت و منوج پلیمر و ویوکیتازز محلول کیتازز می‌شود و با باکتری کیتازز (Chit) به بودن ویرگینی در محرومیت با کاهش کاتازز محروم کیتازز یا بی‌پرداخته در محرومیت (Lim & Hudson, 2005).

مراجع

برای پژوهش خاصی، محلول پلیمری Chit/PEO/Li با مقدار برابر با 4 میکروگرم/ملیلیتر (MIC=MBC = 0.4 میکروگرم/ملیلیتر) آمد (2013). با تولید Avcیو و انتها داده و همکاران (2013) با تولید نانوایی پلیمرهای مصنوعی و پلیمر PVA به‌عنوان عصاره حاصل از طریق الکتروپوزیتیک، اثر باکتری‌کشتی را در مقول استاکلیک که در غلظت 2% در مول/درصد ونی حاصل که در صندوق به‌عنوان عصاره حاصل در محلول PVA و PEO بود مشاهده شد. افزود عصاره برگ Chit/PEO/Li

نحوش نشان داده، اثر ضدبیولوژی خویی در برای باکتری‌های گرم مثبت و گرم منفی داشته است (Sadri et al., 2012). در پژوهش خاصی، محلول پلیمری Chit/PEO/Li با مقدار برابر با 4 میکروگرم/ملیلیتر (MIC=MBC = 0.4 میکروگرم/ملیلیتر) آمد (2013). با تولید Avcیو و انتها داده و همکاران (2013) با تولید نانوایی پلیمرهای مصنوعی و پلیمر PVA به‌عنوان عصاره حاصل از طریق الکتروپوزیتیک، اثر باکتری‌کشتی را در مقول استاکلیک که در غلظت 2% در مول/درصد ونی حاصل که در صندوق به‌عنوان عصاره حاصل در محلول PVA و PEO بود مشاهده شد. افزود عصاره برگ Chit/PEO/Li

نحوش نشان داده، اثر ضدبیولوژی خویی در برای باکتری‌های گرم مثبت و گرم منفی داشته است (Sadri et al., 2012). در پژوهش خاصی، محلول پلیمری Chit/PEO/Li با مقدار برابر با 4 میکروگر
REFERENCES

Abulyazid, I., Mahdy, E.M. and Ahmed, R.M. 2013. Bioc-
hemical study for the effect of henna (Lawsonia inermis)

Al-Rubayi, K.K., Jaber, N.N., Al-Mhaawe, B. and Alru-
bayi, L.K. 2008. Antimicrobial efficacy of henna exc-

Alia, B., Bashir, A. and Tanira, M. 1995. Anti-inflam-
matory, antipyretic, and analgesic effects of Lawsonia in-
ermis (L.) in henna. – Pharmaco. 51: 356-363.

of antibacterial PVA and PEO nanofibers containing Law-

Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A.
and Zhang, M. 2005. Electrospun chitosan-based nano-
fibers and their cellular compatibility. – Biomat. 26:
6176-6184.

Borade, A.S., Kale, B.N. and Shete, R.V. 2011. A phytop-
harmacological review on Lawsonia inermis (Linn.). –

Dai, T., Huang, Y.Y., Sharma, S.K., Hashmi, J.T., Kurup,
D.B. and Hamblin, M.R. 2010. Topical antimicrobials
for burn wound infections. – Recent Patents on Anti-in-
fective Drug Discov. 5: 124-151.

Dai, T., Tanaka, M., Huang, Y.Y. and Hamblin, M.R.
2011. Chitosan preparations for wounds and burns: anti-
microbial and wound-healing effects. – Expert. Rev.

Dev, V.G., Venugopal, J., Sudha, S., Deepika, G. and Ra-
makrishna, S. 2009. Dyeing and antimicrobial charac-
teristics of chitosan treated wool fabrics with henna dye.

El-Hag, A., Al-Jabri, A. and Habbal, O. 2007. Anti-mic-
robial properties of Lawsonia inermis (henna): a review.

Evangelina, D., Shankar, R.B., Reddy, R.K. and Kumar,
B. 2011. Formulation and evaluation of Lawsonia inter-
2: 687-690.

Jayaraman, K., Kotaki, M., Zhang, Y., Mo, X. and Rama-
krishna, S. 2004. Recent advances in polymer nanofi-

Jiang, H., Fang, D., Hsiao, B., Chu, B. and Chen, W.
2004. Preparation and characterization of ibuprofen-loaded po-
ly(lactide-co-glycolide/poly(ethylene glycol)-g-chitos-
on electrospun membranes. – J. Biomate. Scie. Polymer

Kong, H. and Jang, J. 2008. Antibacterial properties of no-
vel poly(methyl methacrylate) nanofiber containing sil-

Li, D. and Xia, Y. 2004. Direct fabrication of composite
and ceramic hollow nanofibers by electrospinning.
– Nanos Let. 4: 933-938.

Lim, S.H. and Hudson, S.M. 2003. Review of chitosan and
its derivatives as antimicrobial agents and their uses as
textile chemicals. – J. Macromol. Scie., Part C: Polymer
Reviews 43: 223-269.

Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z. and De Yao, K.
2001. Antibacterial action of chitosan and carboxym-

نتيجة دردشة

استفادتنا من عصارة حنة في محلول نانو نانو نانو، خواص
 ضدبكتيري محلول إذ موضوعاً على دردشة باكتري يمني
 برسري شهد في زوهوش بهودي. الكروبيز ين نحلول
 نانو نانو داراً نانو نانو نانو (MBC) البargv
 ويزغي ضدبكتيري با قطر ميانيًن 80 نانومتر اجتاد مم كد
 ازلحات مورفولوجي و نادرة قطر عالف مطلوب است.

سياضگزاري

از همکاری مدیر گروه میکروبشناسی و ویروسشناسی
دانشکده پزشکی دانشگاه بقیه الله و مستند آزمایشگاه قاره-
شناسی و میکروبشناسی این دانشگاه برای فراموشی
و تسهیلات لازم قدردانی میشود.

How to cite this article: