Inductive effect of IDE1 on differentiation of human induced pluripotent stem cells into definitive endoderm cells by using PCL nanofibrous scaffold

Elham Hoveizi1*, Mohammad Nabium2, Kazem Parivar3, Mohammad Massumi4 and Jafar Ai4

Received 01.10.2012/ Accepted 26.10.2013

1Department of Biology, Faculty of Science, Shahid Chamran University of Ahwaz, Ahwaz, Iran
2Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
3Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
4Department of Tissue Engineering, Faculty of New Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran

*Correspondent author: e.hoveizi@yahoo.com
Abstract. Induced pluripotent cells have been considered as one of the most recent and best cell sources for the cell therapy. In this study, the differentiation potency of human iPS cells, cultured on scaffolds, which can differentiate into definitive endodermal cells as precursor for hepatocytes, pancreatic and lung cells, was studied. Embryoid bodies composed of pluripotent cells, were seeded on electrospinning nanofiber scaffold. The cells were differentiated into definitive endoderm using IDE1. Expression of definitive endoderm markers including Sox17, FoxA2 and GSC were confirmed by immunocytochemistry staining and qRT-PCR analysis. In the present study, morphology and viability of cells were evaluated by utilizing a scanning electron microscopy and MTT assay, respectively. The results demonstrated the positive effect of 3D cultures, using suitable factors, on definitive endoderm differentiation.

Keywords. iPSCs, IDE1, definitive endoderm, electrospun scaffold
Induced definitive endoderm from mouse, rat and human [D’Amour et al., 2005] displayed functional morphologies resembling the definitive endoderm. Researchers demonstrated the feasibility of creating a new organ from stem cells, a significant advancement in the field of regenerative medicine. The study provided a blueprint for the development of new therapeutic strategies for treating various diseases.

Sengupta et al. (2013) suggested that the definitive endoderm could be induced from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

The work of Senga et al. (2013) showed that the definitive endoderm could be induced from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

Meng et al. (2016) demonstrated that the definitive endoderm could be induced from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

Domingos et al. (2013) reported the successful induction of definitive endoderm from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

Hosoya et al. (2012) showed that the definitive endoderm could be induced from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

et al. (2009) reported the successful induction of definitive endoderm from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

et al. (2007) demonstrated that the definitive endoderm could be induced from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

et al. (2007) reported the successful induction of definitive endoderm from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

et al. (2006) showed that the definitive endoderm could be induced from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

et al. (2006) reported the successful induction of definitive endoderm from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.

et al. (2006) demonstrated that the definitive endoderm could be induced from human pluripotent stem cells. This finding opened up new possibilities for the development of personalized medicine and regenerative therapies.
مواد و روش‌ها

کشت سلول‌های hiPS

سلول‌های hiPS به صورت معمول بر روی سلول‌های فيروبسات موشی که یک لایه سلولی تغذیه کننده محصول موش، در محیط کشت DMEM/F12 Knock Out Serum (%5) حاوی (Gibco) Fetal Bovine Serum (FBS, Gibco) و ال-گلوتاپام با غلظت (%5) غلظت (Gibco) لیل مولار (Gibco) میلی موئلار، اسیدهای آمید ضروری (Sigma) و غلظت یک میلی موئلار، پنی سیلان و bFGF (10 ng/ml) با غلظت (Gibco) DME/F12 شرکت میکس سلول‌های آزاد در محیط کشت جنین (EBs) شکل گیری کنند. میکس سلول‌های با محیط کشت ال-گلوتاپام DMEM/F12 غلظت 2 میلی موئلار، بنام کانایاتولون با غلظت (%1) بر روی 1/1 میلی موئلار، اسیدهای آمید ضروری با غلظت (R&D) 1/1 میلی موئلار، پنی سیلان و مانگسول (مشابه) سلول‌های تغذیه کننده محصول موش در محیط کشت DMEM/F12 (%1) بر روی 1/1 میلی موئلار، بنام کانایاتولون با غلظت (Stemgent) IDE1 بر روی 1/1 میلی موئلار، پنی سیلان و

کشف سلول‌های hiPS

بعد از این که حدود 80% فلورسک بر پد، سلول‌های بیش از سلول‌های تغذیه کننده جدا شدند و حدود 50% از سلول‌های در فلورسک شش خانه تجسج به مدت 2 روز همراه با محیط کشت کامل قرار داده شدند تا اجسام جنین (EBs) شکل گیری کند. میکس سلول‌های با محیط کشت ال-گلوتاپام DMEM/F12 غلظت 2 میلی موئلار، بنام کانایاتولون با غلظت (%1) بر روی 1/1 میلی موئلار، اسیدهای آمید ضروری با غلظت (R&D) 1/1 میلی موئلار، پنی سیلان و مانگسول (مشابه) سلول‌های تغذیه کننده محصول موش در محیط کشت DMEM/F12 (%1) بر روی 1/1 میلی موئلار، بنام کانایاتولون با غلظت (Stemgent) IDE1 بر روی 1/1 میلی موئلار، پنی سیلان و

بررسی‌های مورفولوژی با میکروسوب الکترونی

مورفولوژی، تغییرات الیاف به دست آمده و همجین سلول‌های آراپی سلولی بر داریس با میکروسوب الکترونی (SEM) برای آماده‌سازی نمونه برشی شد. برای آماده‌سازی نمونه برشی شد.
آزمایی مزان یکی سولوی درون

میزان یکی سولوی کش داده شده روی داریست نانو فیوز در مقایسه با محیط کشت دوده‌ی (محیط تمام‌بری کشت دوده‌ی کاملاً مشابه محیط تمام‌بری کشت سعی‌ی است و فقط در این مرحله داریست و نه بعداً) با استفاده از 5 mg/ml MTT با گلفت MTT این آزمون در روزهای 3 و 5 بعد از قراردادن سولوی در محیط کشت دوده‌ی و سعی‌ی انجام شد. به این صورت که در زمان مناسب بعد از کشت سولوی در پایان مدت 300 هانه، محیط کشت خارج و به هر هانه حدود MTT میلی لیتر محیط تازه حاوی 30 میکرویلتر از محلول اضافه شد. بعد از 3 ساعت انکوباسیون با دمای 37 درجه سانتی‌گراد محلول خارج و به هر هانه 200 میکرویلتر DMSO (Dimethyl Sulfoxide) اضافه شد. سپس گذاری نمونه در طول موج 560 با استفاده از دستگاه الیزای ریزر خواننده شد.

پرسی آزمایی آماری

کنترل و آزمایش به صورت مانگن و انحراف از خطای میانگین محاسبه شد و برای ارزیابی معنی‌دار بودن اختلاف SPSS(Ver.12) بین گروه‌ها از آزمون T و نمودار D په انجام داده بود. در نظر گرفته شد.
نتایج
بررسی مورفولوژی سلول‌های hiPS کشت داده شده بر داربست PCL

بررسی مورفولوژی داربست PCL و چگونگی استقرار سلول‌های hiPS بر داربست پوشش‌داده شده با ماتریل بردی از PCL با استفاده از روش MTT انجام گردید. میکروسکوب الکترونیکی انتو فیریوز PCL در شکل 1-الف نشان داده شده است. نوع PCL حذف داده شده است و متوسط قطر الاف با نرم‌افزار measurement حدوداً بین 200 نانومتر تخمین زده شد (شکل 1-ب). شکل 2 بین چگونگی استقرار سلول‌های hiPS بر داربست پوشش‌داده شده با ماتریل بردی از PCL و چگونگی استقرار سلول‌های hiPS بر داربست از روش عکس‌برداری با SEM میکروسکوب الکترونیکی انجام گرفت. میکروسکوب الکترونیکی انتو فیریوز PCL در شکل 1-الف نشان داده شده است.

شکل 1-الف: میکروسکوب الکترونیکی SEM نمودار میانگین قطر الاف داربست PCL با نمودار میانگین قطر الاف داربست hiPS. (scale bar: 1µm).

شکل 2-الف: نمودار میانگین قطر الاف داربست hiPS با نمودار میانگین قطر الاف داربست PCL. 

شکل 1-ب: نمودار میانگین قطر الاف داربست hiPS با نمودار میانگین قطر الاف داربست PCL.

شکل 2-ب: نمودار میانگین قطر الاف داربست hiPS با نمودار میانگین قطر الاف داربست PCL.

شکل 1-الف: MTT روش برای مقایسه و بررسی میزان بقا سلول‌های hiPS در شرایط کشت دویابدی و سه‌یابدی در روزهای 20

شکل 2-الف: MTT روش برای مقایسه و بررسی میزان بقا سلول‌های hiPS در شرایط کشت دویابدی و سه‌یابدی در روزهای 20
یافته‌های نوین در علوم زیستی، جلد 1: 22-8 (2015)

رنگ‌فرومازون به‌وسیله آنزیم دهیدرونزاز میتوکندریایی حاصل از سلول‌های زنده و فعال از نظر متابولیک انجام می‌گردد.

شکل ۲- الکترومیکروگرافی از سلول‌های hiPSCs به‌وسیله SEM ۷ روز بعد از تأمین این سلول‌ها با محفظه کشت PCL کشت‌داده شده بر داربست نانوپیر. (A) hiPSCs on PCL scaffold with lower magnification (scale bar: 25µm). (B) hiPSCs on PCL scaffold with higher magnification (scale bar: 5µm).

نگاهی نشان‌دهنده افزایش میزان سلول‌های hiPSCs بر داربست در مقایسه با کشت در شرایط دوبعدی بود. این افزایش در روز اول معنی‌دار نبود، اما با گذشت سه روز از زمان استقرار سلول‌های hiPSCs بر داربست کاملاً مشهود بود (p<0.05) (شکل ۳).

شکل ۳- نتایج حاصل از MTT کشت‌داده شده بر داربست نانوپیر (3D) PCL و در شرایط کشت دوبعدی (2D) به منظور کنترل در روز‌های ۱، ۳ و ۵ بعد از کشت که با گذشت ۵ روز از زمان استقرار سلول‌های hiPSCs بر داربست افزایش قابل مشاهده بر داربست کاملاً مشهود بود (p<0.05). (n=3)

نتایج نشان‌دهنده افزایش میزان سلول‌های hiPSCs بر داربست در مقایسه با کشت در شرایط دوبعدی بود. این افزایش در روز اول معنی‌دار نبود، اما با گذشت سه روز از زمان استقرار سلول‌های hiPSCs بر داربست کاملاً مشهود بود (p<0.05) (شکل ۳).

نگاهی نشان‌دهنده افزایش میزان سلول‌های hiPSCs بر داربست در مقایسه با کشت در شرایط دوبعدی بود. این افزایش در روز اول معنی‌دار نبود، اما با گذشت سه روز از زمان استقرار سلول‌های hiPSCs بر داربست کاملاً مشهود بود (p<0.05) (شکل ۳).

نگاهی نشان‌دهنده افزایش میزان سلول‌های hiPSCs بر داربست در مقایسه با کشت در شرایط دوبعدی بود. این افزایش در روز اول معنی‌دار نبود، اما با گذشت سه روز از زمان استقرار سلول‌های hiPSCs بر داربست کاملاً مشهود بود (p<0.05) (شکل ۳).

نتایج نشان‌دهنده افزایش میزان سلول‌های hiPSCs بر داربست در مقایسه با کشت در شرایط دوبعدی بود. این افزایش در روز اول معنی‌دار نبود، اما با گذشت سه روز از زمان استقرار سلول‌های hiPSCs بر داربست کاملاً مشهود بود (p<0.05) (شکل ۳).

نتایج نشان‌دهنده افزایش میزان سلول‌های hiPSCs بر داربست در مقایسه با کشت در شرایط دوبعدی بود. این افزایش در روز اول معنی‌دار نبود، اما با گذشت سه روز از زمان استقرار سلول‌های hiPSCs بر داربست کاملاً مشهود بود (p<0.05) (شکل ۳).
نمایش همچنین در پیلی‌های بوشیده‌شده با ماتریژل قرار گرفته و در مجاورت محیط تماشایی حاوی IDE1 به‌مدت یک هفته تیمار شدند. برای تعیین تماپای سلول‌های آندودروم قطعی از اجام جنبی حاصل از سلول‌های hiPS در شرايط کشت سعیده، بیان مارکرهای آندودرمی شامل GSC و FOXA1 و SOX17 شامل آمیزی ایمونوپاتی سلول‌های آندودرمی تماپایی‌های براي هر سه ژن در روز هفتم بعد از تماپای مثبت ارزیابی شد (شکل 4 ب).

نوان تمایزی سلول‌های بوشیده شده با ماتریژل با استفاده از رنگ آمیزی ایمونوپاتی‌سوزی مطالعات پیلی نشان می‌دهد که IDE1 در شرايط کشت دو بعث سبب تماپای سلول‌های hiPS به سلول‌های آندودروم قطعی می‌شود. در تحقیق حاضر برای بررسی نوان تمایزی سلول‌های hiPS در شرايط کشت سعیده با كارایی بالا اجام جنبی حاصل از کشت سوماتوسین (شکل 4-الف)، روي داربست نانوفیبر پوشیده شده با ماتریژل و

شکل 4-الف) مورفولوژی اجام جنبی حاصل از سلول‌های تمایزی‌ها و. ب) رنگ آمیزی ایمونوپاتی‌سوزی برای مارکرهای آندودرمی قطعی شامل PCL و 7 روز بعد از تیمار سلول‌های hiPS با استفاده از فاکتور IDE1 در شرايط کشت سعیده بر داربست که نشان دهند با این مارکرهای آندودرومی در مقایسه با حالات کنترل است. رنگ آمیزی ایمونوپاتی‌سوزی گروه‌های تیمارشده، برای پروتئین‌ها GSC و SOX17 به رنگ آبی و FOXA2 و DAPI و 100μm (scale bar: 100μm).
بررسی بیان mRNA مارکرهای آنذودرمی در سلول آنذودرمی در سلول FNMT به استفاده از qRT-PCR ویژه سلول‌های آنذودرمی قطعی شامل mRNA و پژوهش به روش RT-PCR در سلول‌های مارکرهای آنذودرمی در سلول‌های FNMT پژوهش‌ شده است.

SOX17، FoxA2 و GSC mRNA بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردیده است از سلول‌های FNMT پژوهش‌ شده با استفاده از qRT-PCR و همچنین بیان گردی
جدول 1- پراپرهای استفاده شده برای انجام RT-PCR
Table 1. Primers which were used for qRT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens forkhead box A2 (FOXA2)</td>
<td>F5'- GTCTGAGGAGTCCGAGACGAC-3'</td>
</tr>
<tr>
<td></td>
<td>R5'- CACGGGAGGATCCTGCTG-3'</td>
</tr>
<tr>
<td>Homo sapiens gonadoid homebox (GSC)</td>
<td>F5'- GCTCTCTGACCTGCTGACT-3'</td>
</tr>
<tr>
<td></td>
<td>R5'- ACGGAGCAAGTGTATCTG-3'</td>
</tr>
<tr>
<td>Homo sapiens SRY (sex determining region Y) box 17 (SOX17)</td>
<td>F5'- TCATGCTGGGAGGACACG-3'</td>
</tr>
<tr>
<td></td>
<td>R5'- GCTCCATACGTTCCATG-3'</td>
</tr>
<tr>
<td>Homo sapiens SRY (sex determining region Y) box 7 (SOX7)</td>
<td>F5'- TTGCTATGAGTGTGCTTT-3'</td>
</tr>
<tr>
<td></td>
<td>R5'- ACAGGATTTACAGGACG-3'</td>
</tr>
<tr>
<td>Homo sapiens SRY (sex determining region Y) box 1 (SOX1)</td>
<td>F5'- CCAGGACGAGATGACG-3'</td>
</tr>
<tr>
<td></td>
<td>R5'- TGGGTCATGACTGAGCCTG-3'</td>
</tr>
</tbody>
</table>

بحث

مقدمه: بافت رشته‌ای است که به‌سرعت در حال‌گسترش است. مطالعات بیماری انجام‌گرفته که اهمیت و مزیت‌های فرآیند استفاده از کشت سه‌بعدی در تکثیر، تمایز، نقل و مهاجرت سلول‌ها را تأیید می‌کند (Hu et al., 2013). مدا در این مطالعه، تمایز سلول‌های سلول‌های آن‌آتودرمی قطعی را با استفاده از ریزمولکول PCL در سیستم کشت سه‌بعدی روی داربست IDE1 پوشه‌داده‌شده با متانژال دم‌ایده‌ای جدید بررسی کرده و بیان زنده‌ی مخصوص آن‌آتودرمی قطعی شامل کن‌دی که نشان دهنده‌ی توان نمایی سلول‌های hiPS به سلول‌های آن‌آتودرمی قطعی با کارایی بالای استفاده از پیشرفته‌ای اساسی در زمینه‌ی تمایز سلول‌های بی‌نی‌ای به‌منظور آن‌آتودرمی که براساس تحقیقات پیش‌نی‌ی کوکینی به دست آمده روشن کرده است که تمایز به آن‌آتودرم قطعی اولین و مهم‌ترین مرحله در تکثیر اندام‌های آن‌آتودرمی ازجمله پانگپاس کبید، سرفاصل و تیمومس (Sui et al., 2013; Kopper &Benvenisty, 2012; Mopou et al., 2010; Kim et al., 2008a; Jiang et al., 2007; D’Amour et al., 2006; Wang et al., 2006) و همکارانش برای نخستین‌بار با استفاده از فاکتور Amour سلول‌های آن‌آتودرمی قطعی شدن. سپس این سلول‌های پیشرفت‌زا را به سلول‌های بی‌کانکریسی تمایز دادند (D’Amour et al., 2006). تا به امروز مطالعات فرآیند درجه‌تیمایز انواع سلول‌های به صورت آن‌آتودرمی که پیشرفت سلول‌های هیاتوتیس، پانگپاس و غیره اند، صورت گرفته است؛ ازجمله اینکه در سال 2013 به موفقیت‌های چشم‌گیری در Braffman Maruyama این زمینه دست یافتند 2013 Braffman et al., 2013; Maehr et al., 2009; Kroon et al., 2008; Baharvand et al., 2006؛ در میان منابع مختلف سلولی Imamura et al., 2004 اخیراً سلول‌های iPSC از دلیل مزیت‌های فرآیند ازجمله فقدان محدودیت‌های داخلی و عدم رضایت به عنوان یک نوع سلول مناسب مطرح‌اند (Ohmine et al., 2013/17).
زنده روش ساخت است، که ماتریکس خارج سلولی که محیط انواع فاکتورهای روتوپی، ماکروموکولها و انواع فراوان سیگنال‌گذاری مولکولی است، در فراپتیاد مختلف رفتار سلول تأثیر حیاتی و ضروری دارد؛ Kim et al., (Ghasemi-Mobarakeh et al., 2009 و 2008a). بنابراین فراوان کردن سیستم‌های کشت سبب که با تکثیر زیاد می‌توانند جایگزینی برای ماتریکس خارج سلولی شوند، مهم ترین اصول مطرح در استفاده از مهندسی بافت به حساب می‌آید. در سال‌های اخیر استفاده از داربست مصنوعی به دلیل کارایی بالا، سرتار تخیب‌پذیری، توان انعطاف‌پذیری و قدرت ضبط به طور چشم‌گیری آفزایش یافته است (Reed et al., 2009; Cho et al., 2006). فراوانی با استفاده از سیستم کشت سبب کشیدن انجام جریه است و نتایج تاییدگرکننده نقش در خور توجه استفاده از داربست در تمایز انواع سلولی از جمله سلول‌های عصبی، قلبی و آندودرمی است. همچنین افزایش در خور توجه با تکثیر سلول‌ها با استفاده از کشت سببی در مقایسه با کشت دوبعدی در سبزی از آزمایشگاه‌های گزارش شده (Herrmann et al., 2013; Prabhakaran et al., 2013; Orlova et al., 2013; Lee et al., 2011; Gao et al., 2011; Kai et al., 2011; Farzaneh et al., 2010; Chayoumrit et al., 2009; Ghasemi-Mobarakeh et al., 2009; Xie et al., 2009; Yim & Leong, 2005; Yoshimoto et al., 2003; Li et al., 2002) تاییدگرندن افزایش معنی‌دار آناتومی سلولی را با استفاده از داربست پوشیده شده به ماتریز الاست مطالعات نشان می‌دهد که استفاده از ماتریز ال، به عنوان یکی از اجزای ماتریکس خارج سلولی، که از لاکمین و کالازن نوع جهار گیرنده می‌باشد، نقش مهمی در حمایت از پیشرفت تمایز به انواع مختلف سلولی دارد و محیط مناسبی برای افزایش تمایز به انواع مختلف سلولی است، از جمله این که IPS تا امروز گزارش شده است (Hosoya et al., 2012) در این مطالعه ما برای آغاز مسیر تمایزی بر تشکیل احساس جنبه از سلول‌های IPS تأکید كردیم. تشکیل احساس جنبه به دلیل این که سبب افزایش تمایز به سلول‌های مختلف می‌گردد و همچنین به دلیل تقابل از تخصص‌پذیری لایه‌های جنبه در طی جنبه‌های مهم است. (Kim et al., 2008a)

در طول مسیرهای تمایزی، برای به‌پایدار بودن به روند تمایز استفاده از انواع فاکتورهای تمایزی آزمایش شده که از جمله مهم ترین آنها استفاده از سیگنال‌گذاری Activin A و Wnt3a و از مطالعات مورد تایید قرار گرفته است 2008; Jiang et al., 2007; D'Amour et al., 2005. طی سال‌های اخیر محققین همراهه به دنبال یافتن فاکتورهای مختلف تمایزی با کارایی بالا و صرفاً اقدامی یا مرکادور در آمریکا اولین بار فاکتورهای با عنوان فاکتور الافاکندا آندودرم قطعی (IDE1) با کارایی تمایزی با را پیشنهاد دادند (Borowiak et al., 2009) که به منزله یک مولکول چرخه‌ای مترقبه است و مزیت‌های فراوان از جمله توان و کارایی با در قای سلولی از طریق نفوذ غشا به درون سلول، قسم پایین و سهولت در استفاده از دارد که در سال‌های اخیر در سبزی از تحولات استفاده شده است. از جمله در سال 2012 IDE1 در شرایط کشت دوبعدی موفق به تولید آندودرم قطعی Hsoida استفاده از IDE1 استفاده از hPSC در قای سلولی IDE1 در کشت سببی در حضور Hsoida استفاده از IDE1 و مطالعه استفاده از IDE1 سلول‌های آندودرم قطعی در سیستم کشت سببی به عنوان ایده‌های جدید مطرح است. تحولات در سیستم‌های
نتیجه گیری
ناتای تحقیق حاضر نشان می‌دهد که داربست بلیمی پوشیده‌شده با ماتریزل می‌تواند مدل سوئندن و PCL محیط مناسبی برای رشد و تمایز سلول‌های سلول‌های آندودرمی فطعی با استفاده از فاکتورهای اگروزن مناسب فراهم آورد. بررسی بین انواع مرکزهای آندودرمی با استفاده از رنگ آمیزی ایمونوپتیشیمی و qRT-PCR که در کلیه سه مدل در خور قابل ملاحظه‌ای در مقایسه با کلیه دو مدل دیگر می‌باشد، تأیید گردید. این مطلب است. به طور کلی نتایج نشان می‌دهد که کاربرد تکنولوژی مهندسی بافت درکار فراشبندی نمایی در استراتژی سلول‌درمانی و پیوند بادون تگرگی از رد پیوند برای بیماری‌های انجمله بیماری‌های ناشی از نارسایی کبدی، پانکراتوس و گوارش و خواه هدایت از گرگه برای دست‌بایی به این هدف هنوز باید تلاش‌های گسترده‌ای انجام گیرد.

قدردانی
نویسنده‌گان این مقاله مراقب سپاس و تشکر خود را از ستاد سلول‌های بنیادی و دانشگاه علوم پزشکی تهران به‌خاطر حمایت از این پروژه اعلام می‌دارند.


