Investigation the structure of vegetative organs and development of reproductive organs of *Pimpinella anisum* L.

Parisa Jonoubi¹, Ahmad Majd¹, Aref Marouf² and Shahla Amini³,¹*

Received 08.10.2013 / Accepted 19.10.2015

¹Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
²Plant Protection Research Department, Iranian Research Institute of Plant Protection, Zanjan Agricultural and Natural Resources Research Center, AREEO, Zanjan, Iran
³Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
*Correspondent author: amini@imp.ac.ir

Abstract. *Pimpinella anisum* L. belongs to Apiaceae family. The samples of vegetative and reproductive organs at different stages of development were gathered and investigated by cell-histology methods. The investigation of the anatomical structure of vegetative organs showed that the secretory ducts are arranged between the parenchymal tissues of the leaf. Section of flower buds revealed that anthers had 4 pollen sacs, the division of pollen mother cell was of the simultaneous type, microspore tetrads were of tetragonal type and the tapetum layer was secretory. The study of the ultrastructure of pollen grains with SEM showed that they had 3 pores. The ovary was found to be two-chambered and two-carpeled; the ovule to be anatropous and to have one membrane. In embryogenic investigation it was found that the embryos were globular, cotyledonary and torpedo-shaped and the transition between globular embryos to cordate embryos was found. The vegetative organs were observed to have the general structure of dicotyledons. The development patterns of ovule and embryo sac follow the Polygonum type. Tetrahedral microspore tetrads were observed. The ultrastructure of pollen was found to be similar to those of *Smyrnium*, a genus of Apiaceae family. All stages of embryogenesis were covered in this study.

Keywords. Apiaceae, vegetative organs, pollen grains, ovule, embryogenesis
جنبی و همکاران. ساختار روشنی و راشی بادیان رومنی

مقدمه

بادیان رومنی (Pimpinella anisum L.) یکی از گیاهان آنتی‌بیوتیک محسوب می‌شود. این گیاه از خانواده سامانی‌سانان (Apiaceae) تهیه می‌گردد. خواص ضدبakteری، ضدپیجکی و ضدسلولی این گیاه بررسی و تکثیر شده است.

واژه و روش‌ها

نمونه‌های گیاهی تحت آزمایش بادیان رومنی شامل، ساختاری و شیمیایی این گیاه می‌باشد. ساختاری این گیاه با استفاده از نمودارهای مفصل که شامل نمودارهای تصویری و نمودارهای شیمیایی است، توصیف شده است.

مواد و روش‌ها

نمونه‌های گیاهی تحت آزمایش بادیان رومنی شامل، ساختاری و شیمیایی این گیاه می‌باشد. ساختاری این گیاه با استفاده از نمودارهای مفصل که شامل نمودارهای تصویری و نمودارهای شیمیایی است، توصیف شده است.

برای بررسی فرایندهای گرده‌گذاری میکروسکوپی که شامل نمودارهای تصویری و نمودارهای شیمیایی است، توصیف شده است.

در سال‌های اخیر، به بیشترین استفاده از این گیاه می‌پرداخته است. بهترین استفاده از این گیاه می‌پرداخته است.
نتایج

بررسی ساختر تشريحي اندام‌های روبشی

در بررسی عرضی ساختار نخستین ریشه (شکل 1)، در خارجی- ترین لایه یوست، اپیدرم دیده شد که محل تشکیل تاره‌ای
کش‌شده در ریشه است. پس از اپیدرم پارانشیم یوست در
رده‌ی قرار گرفته است که از سلول‌های جنگلی تشکیل شده
است. درونی ترین لایه یوست آندودرم است و به‌خویی مزر بین
یوست و اسپونژ آندودی را مشخص می‌کند.

در استوانه‌ی آندودی خارجی ترین لایه، دایره‌ی محیطی است که از
یک لایه سلول پارانشیمی تخصصی‌یا نیافته با نام‌یافته‌گونی‌ی

Jonoubi et al. The structure of Pimpinella anisum L.

شکل ۳- برش عرضی ساقه در شروط ساختار پسین (شکل ۲) در خارجی گیاه‌ها سلول‌های اپیدرم حادت مکعبی دارند. سطح الی‌چپ به رنگ فیزیومن می‌شود. اپیدرم را ترکیبی از سلول‌های اپیدرمی‌های مغزی و پتیم‌ها نمایش می‌دهد. اپیدرم با تغییر در شکل لایه‌های سلول‌های ساقه گیاه‌ها می‌شود. از پتیم‌ها و اپیدرم می‌شود. اپیدرم سلول‌های نهایی کلاپتروژن سلول‌های غربال از نوع کلاپتروژن. سلول پاتئوم پوست است. لایه بعدی سلول پاتئوم پوست است.

Fig. 2. Longitudinal section of root end (G.M: Ground Meristem, Ct: Cortex, Qc: Quick center, Cal: Calyptrogen, Re: Root cap, Vc: vascular cylinder). Magnified by 768x.

Fig. 3. Transverse section of stem (Ep: Epiderm, Cu: Cuticle, Tri: Trichome, Par: Paranchyma cortex, Col: Collenchyma, Xyl: Xylem, Phi: Phloem, Ca: Cambium). Magnified by 768x.
Fig. 4. Transverse section of leaves (L.E: Lower Epidermis, U.E: Upper Epidermis, Vb: Vascular bundle, Tri: Trichome). Magnified by 1920x.

Fig. 5. Transverse section of leaves (a: Main vein, b: Secondary vein). (Col: Collenchyma, Sc: secretory conduct, Phl: Phloem, Xyl: Xylem, Cu: Cuticle, Sp: Spongy parenchyma, Pp: Palissadic parenchyma). Magnified by 768x.
Jonoubi et al. The structure of Pimpinella anisum L.

tکوین دستگاه زایشی

نمونه‌بندی و تشکیل دانه گرده

بساک در گونه‌های نام‌گذاری شده در هر گوشه از طریق اوله و پرچمی که در جهت مکانیسمی تشکیل می‌شود و دو لایه با هر دو لایه می‌آورند. لایه داخلی سلول بین‌ای، سلول اسپوروزیتی اولیه و لایه خارجی سلول بین‌ای، سلول‌های کناری اولیه است (شکل 6).

شکل 6- برخی عرضی بساک; P.P.C: سلول کناری اولیه، P.S.C: سلول نوازنده اولیه، P.P.C: سلول مادر پاریئال، P.S.C: سلول مادر اسپوروزیتی. میکروسکوپی بزرگ‌سایه x1920.

Fig. 6. Transverse section of anther; P.P.C: Primary Parietal Cell, P.S.C: Primary Sporogenous Cell. Magnified by 1920x.

Fig. 7. Transverse section of anther; Ep: Epiderm, En; Endothecium, T.S: Tapetum Secretory, Pmc: Pollen mother Cell. Magnified by 1920x.

تکوین دستگاه زایشی

نمونه‌بندی و تشکیل دانه گرده

بساک در گونه‌های نام‌گذاری شده در هر گوشه از طریق اوله و پرچمی که در جهت مکانیسمی تشکیل می‌شود و دو لایه با هر دو لایه می‌آورند. لایه داخلی سلول بین‌ای، سلول اسپوروزیتی اولیه و لایه خارجی سلول بین‌ای، سلول‌های کناری اولیه است (شکل 6).

شکل 6- برخی عرضی بساک; P.P.C: سلول کناری اولیه، P.S.C: سلول نوازنده اولیه، P.P.C: سلول مادر پاریئال، P.S.C: سلول مادر اسپوروزیتی. میکروسکوپی بزرگ‌سایه x1920.

Fig. 6. Transverse section of anther; P.P.C: Primary Parietal Cell, P.S.C: Primary Sporogenous Cell. Magnified by 1920x.

شکل 7- برخی عرضی بساک; Ep: اپیدرم، En; Endothecium, T.S: Tapetum Secretory, Pmc: Pollen mother Cell. Magnified by 1920x.

در طی فرآیند میکروسپوروزیا، به‌دنبال تکمیل میوز 1 در میکروسپوروزیا بدون تکمیل صفحه باختهای، دوامه ای
شده و از آن تعیین می‌کنند (شکل 9). شکل 95 مرحله پیشرفته را نشان می‌ده که میکروسپور جوان شکل کمیوش منظمی را دارد.

منشأ میکروسپور جوان تکه‌شتهای سریع‌تغییر می‌تواند خود را در گذشته و دو هسته برای آید (شکل 96)، یکی هسته‌زایی که متراکم است و دیگری هسته‌زایی که در مقایسه با هسته‌زایی حجم‌تر است (در برخی از گرفته‌شده فقط دو‌شته‌ای بودن قابل تشخیص است).

شکل 8-بررسی فرآیند زایشی، T.T: Tetrad، T.S: Tapetum Secretory. Magnified by 1920x.

بررسی فرآیند زایشی دانه گرده به‌وسیله میکروسپور الکترونی (SEM)

طبق بررسی‌های انجام‌شده توسط میکروسپور الکترونی گلداره، دانه گرده بادیان رومی کشیده است، منظره استوایی آن بیضی شکل به‌طور تقریبی 0.25 میکرومتر است و منظور قطعی سمت‌های بستری 10 میکرومتر دارد. توزینات سطح آگرین بادیان رومی از مشکلی مشهور است. دانه گرده آن از نظر ساختاری یکسان، اندامی شکاف به‌طور تقریبی 25-30 میکرومتر است (شکل 12).
Fig. 9. Transverse section of anther (a: Immature pollen, b: Mature pollen, c: dual-core pollen grains). Magnified by 1920x.

Fig. 10. The ultrastructure of pollen grains from different directions.
Fig. 11. Longitudinal section of flower: Sti: Stigma, Sty: Style, T.T: Transmitting Tissue, Ov: Ovary, Sc: Secretory conduct. Magnified by 192x.

Fig. 12. Transverse section of ovary (a: undifferentiated ovule, b: Immature Ovule), (Ov: Ovary, L. Ov: Ovary Lodge, P.O: Ovule Primordium, Teg: Tegument, O: Ovule). Magnified by 768x.

Fig. 13. Mature unitegmic ovule with its components; Ch: Chalaza, Nu: Nucellus, In: Integument, Mi: Micropyle, F: Funiculus. Magnified by 768x.
در مرحله بعد سلول ماده مگاسپور ایجاد شده از بافت خورش با تهیه میوز کینه رویانی را به وجود می‌آورد. در برخی از که گرفته‌شده (شکل 14)، مشاهده شد که سه‌تاسه در مجاورت سفت دسته‌گاه تخمدان را تشکیل می‌دهند. در قسمت مرکزی کینه رویانی از تركیب دو سفت، هنر نانوی تشکیل می‌شود که در این شکل یکی از هسته‌ها دیده شد. کینه رویانی با لایه ای از سلول‌های درشتی با هسته‌های حجمی به‌دست‌رفتند. انواع‌شناسی اواسط می‌شد.

تخمک در مراحل اولیه تکوین شامل خورش است که با یک پوسته پوشیده شده و با یک فرآیند به نام پندر به جفت‌سازی است. در انتهای آزاد تخمک، شکاف‌کریکی در پوست وجود دارد که این پوست فست است. ناحیه‌که پوستها با یک یا باز تخمک با شالاست. به‌دلیل اینکه انتهای خورش به قبلاً کم‌شده و به دست قاعده‌بندی شده می‌گردد، بنابراین تخمک بادیان روی از نوع وزارگون است در اطراف تخمکان مجزا‌های ترشحی به‌وجود مشخص بودند.

Fig. 14. Transverse section of ovary; Nu: Nucellus, E.A: Egg Aparatus, E.S: Embryo Sac, En: Endothelial, S.N: Secondary Nucleus. Magnified by 768x.
Fig. 15. Longitudinal section of seed (a: Globular embryo, b: The transition from globular embryo to cordate embryo)
(S: Suspensor, H: Hypophysis, En: Endosperm). Magnified by 1920x.

Fig. 16. Longitudinal section of seed (a: Cotyledon embryo, b: Torpedo-shaped embryo) (Cot: Cotyledon, P.R.M: Root Pro-Meristem, P.S.M: Stem Pro-Meristem, Hy: Hypocotyle). Magnified by 1920x.
آپت فلوئوم و پس‌از آن زایل ایجاد می‌شود. مداوح و همکاران (1375) نیز در مورد گونه دیگری از زیرگروهی به نام تشکیل بودند.

در انتهای ریشه اولین منطقه کلاهک استخوان می‌تواند تشکیل می‌دهد. دلاله‌های خارجی می‌باشد. این هم‌چنین سرد، هم‌چنین آب‌و‌هوای گیاه‌های دیگر نیز می‌باشد. در انتهای اولین فرآیند، منطقه تشکیل گونه‌ها کلاهک است. سرمایه‌های انرژی درون گونه تحت مطالعه نموده شده‌اند. آنتی‌کرومات‌آور پروتون‌زیمی و هم‌چنین اکسیدز با تعیین ترکیب رزین به علت این اتفاق می‌باشد. پرداختن بین بافت‌های بافت‌های به‌صورت ماماس تغییر دیده و تشکیل (Xue & Davis, 2010). در گیاهان این‌چنین انجام می‌گیرد. باخته‌های آکروجی‌سازی با سیستم‌های مترکوم و هم‌چنین اکسیدز شیویت‌پردازی این بافت‌ها به‌صورت ماماس تغییر دیده و تشکیل (Xue & Davis, 2010). در گیاهان این‌چنین انجام می‌گیرد. باخته‌های آکروجی‌سازی با سیستم‌های مترکوم و هم‌چنین اکسیدز شیویت‌پردازی این بافت‌ها به‌صورت ماماس تغییر دیده و تشکیل (Xue & Davis, 2010). در گیاهان این‌چنین انجام می‌گیرد. باخته‌های آکروجی‌سازی با سیستم‌های مترکوم و هم‌چنین اکسیدز شیویت‌پردازی این بافت‌ها به‌صورت ماماس تغییر دیده و تشکیل (Xue & Davis, 2010). در گیاهان این‌چنین انجام می‌گیرد. باخته‌های آکروجی‌سازی با سیستم‌های مترکوم و هم‌چنین اکسیدز شیویت‌پردازی این بافت‌ها به‌صورت ماماس تغییر دیده و تشکیل (Xue & Davis, 2010).
روبیانی به لایه درونی پوسته تخمک مختص است. در چنین وضعیت درونی تنها سلولی پوسته تخمک به لایه سلولی اندولیوم متمایز می‌شود. گسترش شعاعی و هسته یزدگر از منشأسلولی اندولیوم است که با لایه تئوم در باکی مطالبی دارد و ناشناخته‌نیانه نشته تغذیه‌ای این دو لایه است.

(Schneitz et al., 1998)

سلول تخم در امتداد محور رآی پایه‌ای طولی شده و به دنبال آن تکمیل عامالان انجم شده و یک سلول کوچک در راس محور و یک سلول یزدگر در پایه‌ای تشریف می‌شود. سلول پایه‌ای و اشتقاق‌های آن با تکمیل لازم، بندهای سوسپانسیور-9 سلولی را ایجاد می‌کند، در حالی که تکمیل‌های رأسی و اشتقاق‌های آن جنین کروی را به وجود می‌آورد در روابط گروه حدوداً 100-90 سلول و وجود دارد. جمعیت این سلول‌ها حجمی بانکادازه سلول تخم اولیه دارد. تکمیل بیشتر در روابط کروی، بیشتر در ناحیه‌های که لایه‌ای نوسه می‌بابند، روابط قلمی شکل را به وجود می‌آورد (Chaudhury et al., 1998).

در بایان رومی جنین قلبی ماهیته نشده، اما مرحله گذاری از روابط کروی در روابط قلبی مشاهده شد. سپس در دو قطع مقابل به هم روابط در تعدادی از سلول‌ها که تکمیلی می‌باشد، این تکمیل‌ها م توکاب می‌شود. حدود 15-15 سلول در قطع معاوی هیبوز و در قطع مقابل حدود 12-10 سلول تکمیل‌های متوکاب می‌شود و به ترتیب پیش‌مرحله، جریان یک‌پره کروی هم‌اکنون شکل می‌گیرد. این مرحله، مرحله بیان تغذیه‌برداری پروتئین‌های است. زیر سلولی پیش‌مرحله ریشه‌بر یک سلول متمایز می‌شوند و ریشه‌چه‌ها را می‌سازند و به ریشه‌چه تعدادی از سلول‌ها متمایز می‌شوند و ساختمان یک‌پره زیر لایه (هیپاکوتل) را می‌سازند. تعدادی از سلول‌ها در گیاه نک نیه در بیک طرف و در دو لایه در یک طرف فنی یه‌ها را می‌سازند. و در مرحلات آی‌های لایه‌ها به هم فشرده می‌شوند و روابط ایجادی در به وجود می‌آورد.

(Kapil & Bhatnagar, 1981)

مادگی در بایان رومی از دو برجه پوسته تکمیل شده است، با پارابین از نوع مادگی پوسته راب ایجاد است و شامل کالری، خام و تخم کننده است. خامه در مرحله نهایی از همدیگر تهیه است. در مادگی پوسته راب با خامه تهیه چندین نوار باینایی ایجاد می‌شود. تخم‌های نارسی در مرحله سفید می‌باشد. ساختار اصلی شامل یک پایان خورش، یک دو پوسته و یک پاد است. پاچه خورش از پایان راب روزمزود تخمک می‌گردد. پوسته در پایان راب خورش طی مگاسپوروز تشکیل می‌شوند. تکمیل آنی کیستیک و طول‌سیر می‌شود، تخم‌های نارسی پوسته به میزان می‌باشد. میزان خم‌گردی تخمک بسته به میزان رشد پوسته و سوسپانسیور (نیم‌تختا) است. نیم‌تختا تخمک واگون خم‌گردی زیادی را نشان می‌دهد. آن‌ها که محور طولی باینای خورش به میزان می‌باشد. (Ekici & Dance, 2004).

محور می‌باشد گرفته است. تخم‌های نارسی در گیاه بایان رومی و یک پوسته می‌باشد و این پوسته کامل رشد و تغذیه‌ای است که ان نیزه‌ی به گزارش‌های و همکاران (1992) مذکر دارد.

سلول مادر مگاسپوری که از سلول‌های باینای خورش ایجاد می‌گردد، بیشتر قبیلی می‌وز را در غددی در تکمیل می‌گردد. این تکمیل در شرایط بایان رامان‌ها تشکیل دوباره در هم چهار مگاسپوری همراه است. مگاسپوری در یک ریز اسپر می‌گردد و سپس سلول تکمیلی می‌شود و یکی باینایی می‌آورد (Shi & Yang, 2003).

现有文本代表为：

روپایی ها به لایه درونی پوسته تخمک مشکی مختص است. در چنین وضعیت درونی تنها سلولی پوسته تخمک به لایه سلولی اندولیومی متمایز می‌شود. گسترش شعاعی و هسته یزدگر از منشأ سلولی اندولیوم است که با لایه تئوم در باکی مطالبی دارد و ناشناخته‌نیانه نشته تغذیه‌ای این دو لایه است.

(Schneitz et al., 1998)
References

Kapil, R.N. and Bhatnagar, A.K. Ultrastructure and biology of female gametophyte in flowering plants. – Cytology 70: 291-337

