Volume 4, Issue 3 (12-2017)                   NBR 2017, 4(3): 246-254 | Back to browse issues page


XML Persian Abstract Print


Tehran University
Abstract:   (4079 Views)
In this study, fungal strains with crude oil biodegradation activity were screened from Shazand oil refinery (Arak). Twelve fungal strains were isolated in PDA medium. TPH assay in the presence of 1% of crude oil showed that the ADH-02 was the most capable strain of oil degradation with an efficiency of 75%. FTIR analysis was revealed that 91% of aliphatic hydrocarbons were degraded by ADH-02. This strain proved to belong to Gliomastix genius with a similarity of 99%. Polycyclic aromatic hydrocarbons degradation analysis with HPLC demonstrated that this strain is capable of removing 67% of anthracene in 14 days. The results showed that Gliomastix sp. was a potent fungal strain in bioremediation of crude oil and polycyclic aromatic hydrocarbon.
Full-Text [PDF 411 kb]   (1840 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2017/12/9 | Revised: 2018/01/4 | Accepted: 2017/12/9 | Published: 2017/12/9 | ePublished: 2017/12/9

References
1. Anwar, Y., Hanafy, A.A.E., Sabir, J.S., Al-Garni, S.M. and Ahmed, M.M.M. 2016. Microbes using PAHs as energy source: relationship with diseases. – Res. J. Biotechnol. 11: 94-109.
2. Aranda, E. 2016. Promising approaches towards biotrans-formation of polycyclic aromatic hydrocarbons with Ascomycota fungi. – Curr. Opin. Biotechnol. 38: 1-8.
3. Atagana, H.I., Haynes, R., and Wallis, F. 2006. Fungal bioremediation of creosote-contaminated soil: a labora-tory scale bioremediation study using indigenous soil fungi. Water. – Air. Soil. Pollut. 172: 201-219.
4. Behnood, M., Nasernejad, B. and Nikazar, M. 2013. Biodegradation of crude oil from saline waste water us-ing white rot fungus Phanerochaete chrysosporium. – J. Ind. Eng. Chem. 20: 1879-1885.
5. Bustamante, M., Durán, N, and Diez, M.C. 2012. Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. – J. Soil. Sci. Plant. Nutr. 12: 667-687.
6. Dastgheib, S.M., Amoozegar, M.A., Khajeh, K. and Vent-osa, A. 2011. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. – Appl. Microbiol. Biotechnol. 90: 305-312.
7. Ekundayo, F.O., Olukunle, O.F. and Ekundayo, E.A. 2012. Biodegradation of Bonnylight crude oil by locally isolated fungi from oil contaminated soils in Akure, Ondo state. Malays. – J. Microbiol. 8: 42-46.
8. Gadd, GM. 2001. Fungi in bioremediation. – Cambridge University Press, 481 pp.
9. Ghosal, D., Ghosh, S., Dutta, T.K., and Ahn, Y. 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. – Front. Microbiol. doi: 10.3389/fmicb.2016.01369.
10. Gogoi, B., Dutta, N., Goswami. P. and Krishna Mohan, T. 2003. A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. – Adv. Environ. Res. 7: 767-782.
11. Green M.R. and Sambrook, J. 2012. Molecular cloning : a laboratory manual. – Cold Spring Harbor Laboratory (4th edition), 2028 pp.
12. Husaini, A., Roslan, H., Hii, K. and Ang, C. 2008. Biode-gradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World. – J. Microbiol. Biotechnol. 24: 2789-2797.
13. Kamyabi, A., Nouri, H., and Moghimi, H. 2017. Syne-rgistic effect of Sarocladium sp. and Cryptococcus sp. co-culture on crude oil biodegradation and biosurfactant production. – Appl. Biochem. Biotechnol. 182: 324-334.
14. Kathi, S, and Khan, A.B. 2012. Isolation and charac-terisation of polycyclic aromatic hydrocarbon degrading soil microbes from automobile workshop sediments. – J. Environ. Sci. Technol. 5: 74-83.
15. Mancera-López, M.E., Esparza-García, F., Chávez-Gómez, B., Rodríguez-Vázquez, R., Martins, L.F. and Peixoto, R.S. 2012. Biodegradation of petroleum hydrocarbons in hypersaline environments. – Braz. J. Microbiol. 43: 865-872.
16. McGenity, T.J. and Gramain, A. 2010. Cultivation of halophilic hydrocarbon degraders. In: Timmis K, editor. Handbook of hydrocarbon and lipid microbiology. – Springer Heidelberg; p. 3847-3854.
17. Mohsenzadeh, F., Chehregani Rad, A., and Akbari, M. 2012. Evaluation of oil removal efficiency and enzy-matic activity in some fungal strains for bioremediation of petroleum-polluted soils. – Iranian J. Environ. Health Sci. Eng. 15: 9-26.
18. Mouhamadou, B., Faure, M., Sage, L., Marçais, J., Souard, F. and Geremia, R.A. 2013. Potential of autochthonous fungal strains isolated from contaminated soils for degr-adation of polychlorinated biphenyls. – Fungal Biol. 117: 268-74.
19. Page, A.L. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. – American Society of Agronomy, Soil Science Society of America Publication.
20. Rahman, K.S., Thahira-Rahman, J., Lakshmanaperumal-samy, P. and Banat, I.M. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. – Bioresour. Technol. 85: 61-57.
21. Romero, M., Cristina Mónica, L., Salvioli, M., Cecilia Cazau, and Arambarri, A.M. 2002. Pyrene degradation by yeasts and filamentous fungi. – Environmen. Pollut. 117: 159-163.
22. Saucedo-Castañeda, G. and Barrera-Cortés, J. 2008. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaug-mentation with filamentous fungi. – Int. Biodet. Biodeg. 61: 151-160.
23. Sepahi, A.A., Golpasha, I.D., Emami, M. and Nakhoda, A.M. 2008. Isolation and characterization of crude oil degrading Bacillus SPP. – J. Environ. Health Sci. Eng. 5: 149-154.
24. Shankar, S., Kansrajh, C., Dinesh, M.G., Satyan, R.S., Kiruthika, S. and Tharanipriya, A. 2014. Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. – Int. J. Environ. Sci. Technol. 11: 367-376.
25. Singh, H. 2006. Mycoremediation: Fungal bioremediation. – John Wiley & Sons, Inc, 592 pp.
26. Varjani, S.J. 2016. Microbial degradation of petroleum hydrocarbons. – Bioresour. Technol. 223: 277-286.
27. Watanabe, T. 2011. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. Third Edition. – CRC Press, 426 pp.
28. Weisman, W. and Group TPHCW. 1998. Analysis of petroleum hydrocarbons in environmental media. Vol 1. – Amherst Scientific Publishers, 98 pp.
84. Anwar, Y., Hanafy, A.A.E., Sabir, J.S., Al-Garni, S.M. and Ahmed, M.M.M. 2016. Microbes using PAHs as energy source: relationship with diseases. – Res. J. Biotechnol. 11: 94-109.
85. Aranda, E. 2016. Promising approaches towards biotrans-formation of polycyclic aromatic hydrocarbons with Ascomycota fungi. – Curr. Opin. Biotechnol. 38: 1-8. [DOI:10.1016/j.copbio.2015.12.002]
86. Atagana, H.I., Haynes, R., and Wallis, F. 2006. Fungal bioremediation of creosote-contaminated soil: a labora-tory scale bioremediation study using indigenous soil fungi. Water. – Air. Soil. Pollut. 172: 201-219. [DOI:10.1007/s11270-005-9074-x]
87. Behnood, M., Nasernejad, B. and Nikazar, M. 2013. Biodegradation of crude oil from saline waste water us-ing white rot fungus Phanerochaete chrysosporium. – J. Ind. Eng. Chem. 20: 1879-1885. [DOI:10.1016/j.jiec.2013.09.007]
88. Bustamante, M., Durán, N, and Diez, M.C. 2012. Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. – J. Soil. Sci. Plant. Nutr. 12: 667-687. [DOI:10.4067/S0718-95162012005000024]
89. Dastgheib, S.M., Amoozegar, M.A., Khajeh, K. and Vent-osa, A. 2011. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. – Appl. Microbiol. Biotechnol. 90: 305-312. [DOI:10.1007/s00253-010-3049-6]
90. Ekundayo, F.O., Olukunle, O.F. and Ekundayo, E.A. 2012. Biodegradation of Bonnylight crude oil by locally isolated fungi from oil contaminated soils in Akure, Ondo state. Malays. – J. Microbiol. 8: 42-46.
91. Gadd, GM. 2001. Fungi in bioremediation. – Cambridge University Press, 481 pp. [DOI:10.1017/CBO9780511541780]
92. Ghosal, D., Ghosh, S., Dutta, T.K., and Ahn, Y. 2016. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. – Front. Microbiol. doi: 10.3389/fmicb.2016.01369. [DOI:10.3389/fmicb.2016.01369]
93. Gogoi, B., Dutta, N., Goswami. P. and Krishna Mohan, T. 2003. A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. – Adv. Environ. Res. 7: 767-782. [DOI:10.1016/S1093-0191(02)00029-1]
94. Green M.R. and Sambrook, J. 2012. Molecular cloning : a laboratory manual. – Cold Spring Harbor Laboratory (4th edition), 2028 pp.
95. Husaini, A., Roslan, H., Hii, K. and Ang, C. 2008. Biode-gradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World. – J. Microbiol. Biotechnol. 24: 2789-2797. [DOI:10.1007/s11274-008-9806-3]
96. Kamyabi, A., Nouri, H., and Moghimi, H. 2017. Syne-rgistic effect of Sarocladium sp. and Cryptococcus sp. co-culture on crude oil biodegradation and biosurfactant production. – Appl. Biochem. Biotechnol. 182: 324-334. [DOI:10.1007/s12010-016-2329-8]
97. Kathi, S, and Khan, A.B. 2012. Isolation and charac-terisation of polycyclic aromatic hydrocarbon degrading soil microbes from automobile workshop sediments. – J. Environ. Sci. Technol. 5: 74-83. [DOI:10.3923/jest.2012.74.83]
98. Mancera-López, M.E., Esparza-García, F., Chávez-Gómez, B., Rodríguez-Vázquez, R., Martins, L.F. and Peixoto, R.S. 2012. Biodegradation of petroleum hydrocarbons in hypersaline environments. – Braz. J. Microbiol. 43: 865-872. [DOI:10.1590/S1517-83822012000300003]
99. McGenity, T.J. and Gramain, A. 2010. Cultivation of halophilic hydrocarbon degraders. In: Timmis K, editor. Handbook of hydrocarbon and lipid microbiology. – Springer Heidelberg; p. 3847-3854. [DOI:10.1007/978-3-540-77587-4_301]
100. Mohsenzadeh, F., Chehregani Rad, A., and Akbari, M. 2012. Evaluation of oil removal efficiency and enzy-matic activity in some fungal strains for bioremediation of petroleum-polluted soils. – Iranian J. Environ. Health Sci. Eng. 15: 9-26.
101. Mouhamadou, B., Faure, M., Sage, L., Marçais, J., Souard, F. and Geremia, R.A. 2013. Potential of autochthonous fungal strains isolated from contaminated soils for degr-adation of polychlorinated biphenyls. – Fungal Biol. 117: 268-74. [DOI:10.1016/j.funbio.2013.02.004]
102. Page, A.L. 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties. – American Society of Agronomy, Soil Science Society of America Publication.
103. Rahman, K.S., Thahira-Rahman, J., Lakshmanaperumal-samy, P. and Banat, I.M. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. – Bioresour. Technol. 85: 61-57. [DOI:10.1016/S0960-8524(02)00119-0]
104. Romero, M., Cristina Mónica, L., Salvioli, M., Cecilia Cazau, and Arambarri, A.M. 2002. Pyrene degradation by yeasts and filamentous fungi. – Environmen. Pollut. 117: 159-163. [DOI:10.1016/S0269-7491(01)00143-9]
105. Saucedo-Casta-eda, G. and Barrera-Cortés, J. 2008. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaug-mentation with filamentous fungi. – Int. Biodet. Biodeg. 61: 151-160. [DOI:10.1016/j.ibiod.2007.05.012]
106. Sepahi, A.A., Golpasha, I.D., Emami, M. and Nakhoda, A.M. 2008. Isolation and characterization of crude oil degrading Bacillus SPP. – J. Environ. Health Sci. Eng. 5: 149-154.
107. Shankar, S., Kansrajh, C., Dinesh, M.G., Satyan, R.S., Kiruthika, S. and Tharanipriya, A. 2014. Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. – Int. J. Environ. Sci. Technol. 11: 367-376. [DOI:10.1007/s13762-013-0366-1]
108. Singh, H. 2006. Mycoremediation: Fungal bioremediation. – John Wiley & Sons, Inc, 592 pp. [DOI:10.1002/0470050594]
109. Varjani, S.J. 2016. Microbial degradation of petroleum hydrocarbons. – Bioresour. Technol. 223: 277-286. [DOI:10.1016/j.biortech.2016.10.037]
110. Watanabe, T. 2011. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. Third Edition. – CRC Press, 426 pp.
111. Weisman, W. and Group TPHCW. 1998. Analysis of petroleum hydrocarbons in environmental media. Vol 1. – Amherst Scientific Publishers, 98 pp.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.